TMS7000
Family Data
Manual

8-bit Microcomputer Family

IMPORTANT NOTICE

Texas Instruments reserves the right to make changes at any time in
order to improve design and to supply the best product possible.

Texas Instruments assumes no responsibility for infringement of patents
or rights of others based on Texas Instruments applications assistance
or product specifications, since Tl does not possess full access to data
concerning the use or applications of customer’s products. Tl also
assumes no responsibility for customer product designs.

Copyright © 1983 by Texas Instruments Incorporated

SECTION PAGE
1. INTRODUCTION
1.1 [€7=Y Y=Y - | IS PP 1-1
1.2 Background And Design Philosophy e 1-1
1.2.1 Strip Chip Architecture Topology (SCAT) 1-2
1.2.2 MiICroprogramming oo v vttt e 1-3
1.3 Key Features Of The TMS7000 Family« ... 1-4
Tid SUPPOIT & vt et e et et e e 1-6
1.4.1 DevelopmentTools e 1-6
1.4.2 Hotline ASSIStanCeo v ittt it it e 1-7
1.4.3 Training SUPPOMt . . . o v ittt e e 1-7
1.4.3.1 TDC-700-TMS7000 Family Systems Design 1-8
1.4.3.2 ATS-710-TMS7000 Family Microprogramming 1-8
1.4.4 DesignEXpPertiSeo v it e 1-8
2. TMS7000 FAMILY ARCHITECTURE
2.1 On-ChipRAM AndRegisters ittt .. 2-2
2.1.1 RegisterFile (RF) 0.t 2-2
2.1.2 Peripheral File (PF) i 2-3
2.1.3 Stack Pointer (SP) o ot e 2-3
2.1.4 StatusRegister (ST) i i 2-3
2.1.5 ProgramCounter (PC)ot 2-4
2.2 On-Chip General Purpose I/OPorts, 2-4
2.3 MemoryModes i e e 2-6
2.3.1 Single-ChipMode. i 2-8
2.3.2 Peripheral ExpansionMode 2-13
2.3.3 FullExpansionModec.vitiii i 2-14
2.3.4 MicroprocessorMode i 2-14
2.3.5 SystemEmulatorMode 2-15
2.4 /O CONtrol REegIStErS o v v ittt e e 2-16
2.5 Interruptand Reset Clock Optionsttt 2-19
2.5.1 Interrupt Priority oo e 2-19
2.5.2 Device lnitialization e 2-20
2.5.3 CPU Interface ToInterruptLogic 2-21
2.5.4 INterrupt LOgiC « .« oo v oo 2-22
2.6 Programmable Timer/EventCounters 2-24
2.6.1 Real Time Clock (RTC) o oo e e e e 2-27
2.6.2 EventCounter (EC) oo vt et e e e 2-27
2.6.3 Timer And Prescaled Clock 2-27
2.6.4 TimerinterruptPulse e 2-28
2.6.5 B 12271 72 2-28
2.6.6 Pulse Width Measurement oo vt ittt it e e 2-29
2.6.7 Pulse Width Modulation (PWM) Theory Of Operation 2-29
2.6.8 Muilti-Interrupt Pulse Width Modulation (PWM). 2-31
2.7 Serial Port (TMS70X1 VersionsOnly) 2-33
2.71 DeSCHPtION .« & vttt e e e 2-33
2.7.2 Clock Sources And SerialPortModes 2-35
2.7.2.1 Asynchronous CommunicationMode 2-35
2.7.2.2 lIsosynchronous CommunicationMode 2-36
2.7.2.3 Serial I/O CommunicationMode 2-37

TABLE OF CONTENTS

2.7.3 Multiprocessor Communicationc.co.uu.... 2-37
2.7.3.1 Motorola (MC6801) Protocol 2-38
2.7.3.2 Intel(I8051)Protocolcouiiiinn.. .. 2-39
2.7.4 Timer 3 .. e 2-40
2.7.5 Serial PortRegisters 2-42
2.7.5.1 Mode Register (SMODE)couuu.... 2-42
2.7.6.2 Serial Control O Register (SCTLO) 2-44
2.7.6.3 Serial Port Status Register (SSTAT) 2-45
2.7.5.4 Serial Control 1 Register (SCTL1) 2-46
2.7.5.5 Timer3DataRegister0 .. v... 2-48
2.7.5.6 ReceiverBuffer 2-48
2.7.56.7 TransmitterBuffer. 2-49
2.7.6 Serial Port Initialization 2-49
2.7.7 Serial Portinterrupt 2-49
2.8 PinDescriptiono 2-50
STANDARD INSTRUCTION SET
3.1 Definitions 3-1
3.2 AddressingModes 3-3
3.2.1 Direct AddressingModes, 3-3
3.2.1.1 Single Register AddressingMode 3-3
3.2.1.2 Register File AddressingMode 3-4
3.2.1.3 Peripheral File AddressingMode 3-5
3.2.1.4 Immediate AddressingMode 3-6
3.2.1.5 Program Counter Relative AddressingMode 3-6
3.2.2 Extended AddressingModes 3-7
3.2.2.1 Direct Memory Addressingc.ouuuu.... 3-7
3.2.2.2 Register File Indirect AddressingMode 3-7
3.2.2.3 Indexed AddressingMode 3-8
3.3 INSTrUCtions 3-8
3.3.1 Implied Operand Instructions 3-8
3.3.2 Single Operand Instructions0 oo uinn.... 3-9
3.3.3 Dual Operand Instructionsc0uuuuunin.. .. 3-10
3.3.3.1 Register File Instruction Types 3-11
3.3.3.2 Peripheral File Instruction Types 3-11
3.34 Jumplnstructions L 3-12
3.3.4.1 Simple Relative Instruction Type 3-13
3.3.4.2 Single Relative Instruction Type 3-13
3.3.4.3 DualRelative Instruction Type 3-13
3.3.4.4 Peripheral Relative Instruction Type 3-14
3.3.5 Extended Address Instructions 3-14
3.3.6 Miscellaneous Instructions, 3-15
3.3.6.1 MOVDINStruction 3-16
3.3.6.2 TRAPINStrUCtIONS i e 3-17
3.4 CustomMicrocoding 3-17
3.5 Instruction Descriptionso oottt 3-20
3.5.1 ADC-AddWIthCarryot e 3-21
3.5.2 ADD-Add 3-22
3.56.3 AND-ANd 3-22
3.5.4 ANDP - And Peripheral Register 3-23
3.5.5 BTJO-BitTestAndJumpifOnecovuuurnn... 3-23
3.5.6 BTJOP - Bit Test And Jump If One Peripheral 3-24
3.5.7 BTJZ-BitTestAndJumpifZero., 3-24

4.

3.5.8 BTJZP - Bit Test And Jump if One Peripheral 3-25
3.5.9 BR-BranCh . .. oottt ittt et e 3-25
3510 CALL-Call ...ttt s 3-26
3511 CLR-ClIEAr . o o vttt it e e et i e e 3-26
3.5.12 CLRC-ClearTheCarryBitt 3-27
3.5.13 CMP-COMPAIE . .« v ovvenvieiiiin et a e e 3-27
3.5.14 CMPA - Compare AccumulatorExtended 3-27
3.5.15 DAC-DecimalAddWithCarry 3-28
3.5.16 DEC-DECremMEeNt . .. v v v ittt ittt 3-28
3.5.17 DECD-DecrementDouble 3-29
3.5.18 DINT-Disablelnterrupts 3-29
3.5.19 DJNZ - Decrement Register And Jump If Not Zero 3-30
3.5.20 DSB-Decimal Subtract WithBorrow 3-30
3.5.21 EINT-Enablelnterrupts« iii e 3-31
3.5.22 IDLE-IdleUntilInterrupt it 3-31
3.5.23 INC-INCrEMENT . . o vttt et e e e e e s 3-32
3.5.24 INV-INVEIt . .ot e e 3-32
3.5.25 JMP-JumpUnconditional 3-33
3.5.26 J<cnd>-JumpOnCondition 3-33
3.56.27 LDA-Load ARegiSterot e 3-34
3.5.28 LDSP-LoadStackPointer 3-35
3.5.29 MOV -MOVE . .ttt it ittt et e 3-35
3.5.30 MOVD-MoveDouble, 3-36
3.5.31 MOVP - Move To/From PeripheralFile 3-36
3.5.32 MPY-MURIPIY . . oot 3-37
3.5.33 NOP-NoOPerationoeuiuneneneneneenennanne. 3-37
B.5.34 OR-OF .« ottt e e 3-38
3.5.35 OPR-OrPeripheralFileRegister 3-38
3.5.36 POP-PopFromStack 3-39
3.5.37 PUSH-PushONnStack.......... ..ot 3-39
3.5.38 RETI-ReturnFromiInterruptt 3-40
3.5.39 RETS-ReturnFromSubroutine 3-40
3.5.40 RL-Rotateleftcoo e 3-41
3.5.41 RLC-RotatelLeftThroughCarry 3-41
3.5.42 RR-RotateRight 3-42
3.5.43 RRC-RotateRight ThroughCarry 3-42
3.5.44 SBB-SubtractWithBorrow 3-43
3.5.45 SETC-SetCarmyttt 3-43
3.5.46 STA-Store ARegister.t . 3-44
3.5.47 STSP-StoreStackPointer., 3-44
3.5.48 SUB-SUDLIACT . . vttt it it e e e e 3-45
3.5.49 SWAP-SwapNibbles 3-45
3.56.60 TRAP-TrapToSubroutinet ininnnn 3-46
3.5.51 TSTA-TestARegiSteroiuiiinnunnnneenn .. 3-47
3.5.562 TSTB-TestBRegister oo 3-47
3.5.63 XCHB-ExchangewithBRegister 3-47
35654 XOR-Exclusive Orottt i 3-48
3.5.556 XORP-Exclusive OrPeripheralFile 3-48
ELECTRICAL SPECIFICATIONS
4.1 TMS7000/TMS7020/TMS7040/TMS70120/TMS7001/TMS7041 4-1
411 Description Of The TMS7000/TMS7020/TMS7040/TMS70120
TMS7001/TMS7041 DeVICeS . -« v v i o vt e e it e i e e s 41

4.1.2 KeyFeatures 4-2
4.1.3 Absolute Maximum Ratings Over Operating Free-Air Temperature
Range 4-3
4.1.4 Recommended Operating Conditions 4-3
4.1.5 Electrical Characteristics Over Full Range Of Operating Conditions 4-3
4.1.6 Recommended Crystal/Clockin Operating Conditions Over Full
OperatingRange 4-4
4.1.7 Memory Interface Timing At 10MHz Over Full Operating Free Air
TemperatureRange 4-5
4.1.8 Application Of Ceramic Resonator 4-7
4.1.9 SerialPort Timing 4-8
4.1.9.1 InternalSerialClock 4-8
4.1.9.2 ExternalSerialClock 4-9
4.1.9.3 RX Signals In CommunicationModes 4-10
4.1.9.4 TXSignals In CommunicationModes 4-11
4.1.9.5 RXSignalsInSeriall/OMode 4-12
4.1.9.6 TXSignalsIinSeriall/OMode 4-13
4.1.10 PinDescriptionsvoui i 4-14
4.1.10.1 Pin Descriptions Of The TMS7000/TMS7020/TMS7040
TMS70120 . . oo 4-14
4.1.10.2 Pin Descriptions Of The TMS7001/TMS7041 4-15
4.2 TMS70C00/TMS70C20/TMS70C40 4-16
4.2.1 Description Of The TMS70C00/TMS70C20/TMS70C40 4-16
4.2.2 KeyFeatures 4-17
4.2.3 Absolute Maximum Rating Over Operating Free-Air Temperature
Range 4-18
4.2.4 Recommended Operating Conditions 4-18
4.25 Electrical Characteristics Over Full Range of Operating Conditions 4-18
4.2.6 AC Characteristics For Input/OutputPorts 4-19
4.2.7 Recommended Crystal/Clockin Operating Conditions Over Full
OperatingRange 4-19
4.2.8 Memory Interface Timing At VDD =5V, FOSC = 3MHz Over
The Full Operating Free-Air Temperature Range 4-21
4.2.9 Pin Descriptions Of The TMS70C00/TMS70C20/TMS70C40 4-24
4.3 SETOP1IBT ..ttt 4-25
4.3.1 Description Of The SE70P161 Prototyping Component 4-25
4.3.2 Prototyping 4-25
4.3.2.1 TMS7041Prototypinguuuuuunnnon. . 4-25
4.3.2.2 TMS7020/TMS7040/TMS70120 Prototyping 4-25
4.3.3 Programming And Installing Eproms 4-26
4.3.4 Absolute Maximum Ratings Over Operating Free-Air Temperature
Range 4-26
4.3.5 Recommended Operating Conditions 4-27
4.3.6 Electrical Characteristics Over Full Range Of Operating Conditions. ... 4-27
4.3.7 Recommended Crystal/Clockin Operating Conditions Over Full
OperatingRange.oiuuiume . 4-27
4.3.8 Memory Interface Timing At 10MHz Over Full Operating Free-Air
Temperature Rangeo oo vt 4-28
4.3.9 Pin Description Of The SE7OP161 v\, 4-30
5. MICROPROGRAMMING
5.1 TMS7000 Custom Microcoding Description 5-1
5.1.1 Typical Applications 5-1

5.2

5.3

5.1.2 KEYFeaturescuvvt oo 5-2
5.1.3 MicrocodingExample i 5-5
5.1.4 Tradeoffs Of Microcodingot 5-5
5.1.5 Microcode DevelopmentCycle 5-6
5.1.6 Available SUPPOrtt e 5-8
5.1.6.1 TMS7000 Microassembler Software Package 5-8
5.1.6.2 TMS7000 AMPLEmulatorSystem 5-8
5.1.6.3 TMS7000 Microcode Documentation Package 5-8
Microcoded Benchmarks oot ittt i e 5-9
5.2.1 Benchmark RUIES . . . v v i ittt it it et 5-9

5.2.2 Benchmark 1: 16 Bit Binary Addition 5-10

5.2.3 Benchmark 2: 16 Bit Binary Coded Decimal Addition 5-10

5.2.4 Benchmark 3:BlockMove it i i e 5-11

5.2.5 Benchmark4: TableSearch 5-12

5.2.6 Benchmark 5: Binary ToBCD Conversionoovvn ot 5-13

5.2.7 Benchmark 6:Bit1/Oot i i e e 5-14

Microarchitecture Descriptionttt e 5-15

5.3.1 TMS7000 Family AddressSpacecuonnennnnnn 5-15

5.3.2 Basic TMS7000 Architectureo v i i v i i 5-16

5.3.3 Microinstruction Format it e 5-18

5.3.3.1 MicroinstructionCycle Timing 5-20

5.3.3.2 MemoryCycleTimingo v e 5-21

5.3.3.3 ShortMemoryReferences 5-21

5.3.3.4 LongMemoryReferences 5-23

5.3.3.5 InterruptVectorReads........................... 5-24

5.3.3.6 Memory ControlSignals 5-25

5.3.4 Organization Of The TMS7000CPUovvnnn. 5-26

B.3.4.7 PBUS .t ottt ittt e e e 5-28

5.3.4.2 NBUS ..t ittt ittt ittt ittt 5-28

5.3.4.3 ALBUS .. .ottt it e e 5-29

5.3.4.4 AHBUS . . .o oottt i e 5-29

5.3.4.5 OBUS ..o o vttt it i e 5-30

5.3.4.6 MDBUSo oottt ettt 5-32

5.3.4.7 ALUOperationouvveenennneenenens 5-33

5.3.4.8 ShifterOperation 5-35

5.3.4.9 IRRegiSterottt 5-37

5.3.4.10 StatusRegisterctuneriii. 5-38

5.3.4.10.1 (STC)StatusCarryBit 5-39

5.3.3.10.2 STSB-StatusSignBit 5-39

5.3.3.10.3 STEZ-StatusEqualToZeroBit 5-39

5.3.3.10.4 STINT - Status Interrupt EnableBit 5-40

5.3.4.11 BCD ConstantRegistero 5-40

5.3.4.12 Other RegiStersvveuvmmnonnnnnnneeenn. 5-43

5.3.5 Microinstruction Sequence Control Overview 5-44

5.3.5.1 DispatchConditionsc.ooou.... 5-45

5.3.56.1.1 Unconditional Branching-JUNC 5-45

5.3.5.1.2 Function Dispatch-IRL e 5-45

5.3.5.1.3 TestSignBit-JT7 5-46

5.3.6.1.4 TestlfZero-JUZ............ 5-47

5.3.5.1.56 Testlfinterrupt-INT 5-47

5.3.5.1.6 GroupDispatch-IRH 5-48

5.3.56.1.7 TestlfCarry-JC 5-49

5.3.5.1.8 TestStatusRegister-MJMP 5-50

5.3.6 RESEtOPEration . . .o vt vvi i 5-51

DESIGN AIDS
6.1 Interfacing The TMS7000 To Peripheral And Memory Devices
6.1.1 Introduction L

6.1.2 Peripheral Expansion Mode Example
6.1.2.1 Read Cycle Timing For The Peripheral Expansion Mode

6.1.2.2 Write Cycle Timing For The Peripheral Expansion Mode

6.1.3 Microprocessor Mode Example

6.1.3.1 Read Cycle Timing For The Microprocessor Mode

6.1.3.2 Write Cycle Timing For The Microprocessor Mode

6.1.4 Software Considerations

6.2 Serial Communication With The TMS7000 Family
6.2.1 CommunicationFormats

6.2.2 Design Constraints For Software And Hardware UART
6.2.2.1 Design Of A Software UART For The TMS7040

6.2.2.2 Hardware UART (TMS7041)

6.2.2.3 RS-232-Cinterface

6.2.2.4 Other Design Approach

6.3 Instruction Set Application Notes
6.3.1 The Status Register
6.3.1.1 Compare And Jump Instructions

6.3.1.2 Addition And Subrtaction Instructions

6.3.1.3 Swap And Rotation Instructions

6.3.2 Stack Operationsouui
6.3.3 Subroutine Instructions
6.3.4 Multiply And Shifting
6.3.5 Branch Instructions
6.3.6 Interrupts

DEVELOPMENT SUPPORT TOOLS

7.1 Introduction.
7.1.1 XDS Concept
7.1.2 Key Features

7.2 CrossWare

7.3 XDSHardware
7.3.1 Model 22
7.3.2 Model 33

7.3.3 Differences And Similarities - Model 22/Model 33

7.3.4 XMPL .

7.3.5 Breakpoint And Trace Functions

7.3.6 Multiprocessing

7.4 EvaluationModules
7.4.1 TMS7000EVM
7.4.1.1 OperatingSystem

7.5 Prototype Component
7.5.1 SE70P161 Description . .« .. oo oot
7517 Prototyping - ..o vv i

7.5.1.2 TMS7041Prototypingoron .

7.5.1.3 TMS7020/TMS7040/TMS70120 Prototyping

7.5.1.4 SE70P161ElectricalData

7.6 Physical And Ordering Information

7.6.1 CrossWare
7.6.2 XDS Hardware

viii

7.6.3 EvaluationModulesttt
7.6.4 Warranty And Subscription Services

8. INDEPENDENT SUPPORT

8.1
8.2

8.3

8.4

INtrOAUCTION .« & v v o e e et e e e e et e e e e
Processor Innovations - Intel Based Support Tools
8.2.1 X| Workstation Device Support
8.2.2 Company To Contact
8.2.3 Product Offerings oo i i it

8.2.3.1 PIDS1810-11

8.2.3.2 PIDS1810-12

8.2.3.3 PIDS1810-32 ..ottt e
Allen Ashley - CP/M Based Support Tools
8.3.1 Company To Contact
8.3.2 Product Offeringso oo ii it

8.3.2.1 CP/M Based Development Software For TMS7000 Family . .
SEEQ: Self-Adaptive EEROM it
8.4.1 Company To Contact

9. QUALITY AND RELIABILITY

9.1
9.2
9.3
9.4
9.5

INTFOQUCTION &« .« o o ot e e e e e e e e e e e s
Average Outgoing Quality i
New Product And Major Change Reliability Qualification Testing
Reliability Monitoring oo i
TMS7020/TMS7040 Reliability Performance

10. GENERAL INFORMATION

10.1

10.2

10.3 TMS7000 Family Documentation
10.4 Worldwide Regional Technology Centers (RTC)

APPENDIX

Appendix A Instruction Execution Times
Appendix B TMS7000 Bus Activity Chart
Appendix C TMS7500 Data Encryption Device
Appendix D References

TMS7000 Family DEVICES .« . v v v vt e e
10.1.1 Prototype And Production Flow
10.1.2 Device Prefix Designators
10.1.3 Clock OPtionNS . . vt v ittt e
10.1.4 Reserved ROM Locations
10.1.56 OrderingInformation it
10.1.5.1 TMS7000 Family Members With On-ChipROM
10.1.5.2 TMS7000 Family Members Without On-Chip ROM
10.1.6 Mechanical Data
Development Support Tools
10.2.1 CroSSWAIE . o v vt v ittt ittt et et e e e
10.2.2 XDSHardwareot v ittt e
10.2.3 Evaluation Modules

APPENDICES

FIGURE PAGE
1-1 TMS7020 MicrocomputerBarPlan 1-3
2-1 TMS7000 Internal Architecture ittt it it et 2-1
2-2 Example Of Stack Initialization Inthe RegisterFile 2-3
2-3 Status Register (ST)ottt e 2-3
2-4 Bidirectional /O LogiC v ottt e e e 2-5
2-5 1/0 Ports: Single-ChipMode e 2-9
2-6 Interrupt Generation: SystemEmulatorMode 2-15
2-7 IOCNTO-1/0OControlRegister Ottt it et e 2-17
2-8 IOCNT1-1/0Control Register 1 it i i e 2-18
2-9 CPU Interface ToInterrupt Logic it it i e it e e 2-22
2-10 InterruptLogiC ottt e 2-23
2-11 Programmable Timer/EventCounterttt iinrennnnnn.. 2-25
2-12 Timers 1 & 2DataAndControlRegisters 2-25
2-13 Pulse Width Measurementttt it ittt et et e e e e 2-29
2-14 Pulse Width ModulatedPulse Train 2-29
2-15 TMS7000PWMINT3Timingt iiieinne.... 230
2-16 Simultaneous Interrupts, INT2Precedingt iinnnn.. 2-31
2-17 Simultaneous Interrupts, INT3Preceding, 2-32
2-18 Serial PortFunctional Blocks e 2-34
2-19 Serial Portl/OLogiCo ot e 2-35
2-20 Asynchronous CommunicationFormat 2-36
2-21 Isosynchronous CommunicationFormat 2-36
2-22 Serial I/O CommunicationFormat 2-37
2-23 Double Buffered WUT And TXSHF e e 2-39
2-24 Motorola Multiprocessor CommunicationFormat 2-39
2-25 Intel Multiprocessor CommunicationFormat 2-40
2-26 TIMER3BlockDiagramttt e e 2-41
2-27 SerialMode Register-SMODE e 2-42
2-28 Serial ControlORegister-SCTLO it i i e e et e e ea 2-44
2-29 Serial Port Status Register- SSTAT ittt 2-45
2-30 SerialControl 1 Register- SCTLT i it e e i 2-47
2-31 Timer3DataRegister- T3DATA it e e e e 2-48
2-32 ReceiverBuffer-RXBUF e 2-48
2-33 Transmitter Buffer- TXBUF i e e 2-49
2-34 SC, PE, FE, And Microprocessor Pin Assignmentsc.uu.... 2-52
2-35 System Emulator Mode Pin Assignments 2-54
3-1 Single Register Addressing Mode ObjectCode 34
3-2 Register File Addressing Mode ObjectCodecciuiinnnn... 3-5
3-3 Peripheral File Addressing Mode ObjectCodeccuu..... 3-5
3-4 Immediate AddressingMode ObjectCode, 3-6
3-5 Program Counter Relative Addressing Mode ObjectCode 3-6
3-6 Direct Memory Addressing Mode ObjectCode 3-7
3-7 Register File Indirect Addressing Mode ObjectCode 3-7
3-8 Indexed AddressingMode ObjectCode o, 3-8
3-9 TrapVector Table e e e e 3-17
4-1 Output Loading CirCUIt FOr TeSt .+« « v v v v et e e e e e e e e e e e e s 4-3
4-2 Measurement Points For Switching Characteristics, 4-4
4-3 Clock TIMING .+ o ¢ oot e e e e e e e e e e e e 4-4
4-4 Recommended Clock ConnectionS . .« v ¢ v v v v it it et et e et e e e 4-5

LIST OF ILLUSTRATIONS

4-5

47
4-8
4-9
4-10
4-11
4-12
413
414
4-15

5-2
5-3
5-4
5-5
5-6
5-7

5-9

5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37
5-38
5-39
5-40
5-41
5-42

Read and Write Cycle Timingo vt ii it i e 4-6

Ceramic Resonator CirCUIt v vt i e it it e et s e e e e e e s 4-7

SC, FE, PE, and Microprocessor Mode Pin Assignments (TMS7000) 4-14
SC, FE, PE, and Microprocessor Mode Pin Assignments (TMS7001) 4-15
Output Loading CircUit FOrTest vt v it e 4-19
CIOCK TIMING « v oo v e e e et e e et e e e e e 4-20
Measurement Points For Switching Characteristics (VDD=5V) 4-20
Read AndWrite Cycle TIMIiNG o ot ittt 4-22
Recommended Clock Connectionsttt 4-23
SC, FE, PE, and Microprocessor Mode Pin Assignments 4-24
Read AndWrite Cycle Timingot 4-29
TMS7000 CPU Internal Block Diagram« oo vt i e 5-4

Assembly Language Multiply Sequence i 5-5

Non-Core Assembly Language Instructions ov i 5-6

Microcode Development Flowchart oo 5-7

TMS7000 Family Address Spacein ettt e 5-16
TMS7000 Overall Block Diagramottt 5-17
Sample Of AMICasmM STatemMeNnto vvv v n it e e 5-20
Microinstruction Cycle Phasesttt 5-20
On-Chip RAM Memory Cycle TIMingo vt v i 5-22
LongMemory Cycle TIMING oo ittt 5-23
Interrupt Vector Reads o oo i i it 5-24
Interrupt Vector Referencesoov ot 5-25
Internal Organization Of The TMS7000CPU o 5-27
P BUS SOUICES .+« v v ottt it e et et e e e et e e 5-28
N BUS SOUMCES .« o o v vttt ittt et e et et it e e e e e e 5-28
AL BUS SOUMCES .+ v v it ittt e ettt e et et e e 5-29
AH BUS SOUMCES .« .« o o v vttt ettt et et et et et it et e 5-30
Lowwrite (1-0) DeSCrption v o v ittt it e s 5-30
O BUSDESHNAtIONS . o . vttt et e e e 5-31
MD BUS DeEStiNAtioNS . . o 0 v ittt e e e e e 5-32
ALUBIock Diagram oottt 5-33
ALU FUNCHONS - & o v ettt e et et et e et e e e e e e e e e e e e et e e 5-33
ALUCAITy INValues . ..o i ittt i 5-34
Microcode EXample oo vttt e e 5-35
SHIFT/ALU Carry-InControlsot e e e s 5-36
Shifter OPerationttt ittt 5-37
IRRegister FOrmats oo i it e 5-38
Status RegiSter o oo 5-38
ST REQISIEr SOUICES .« « o v v v v ettt et et i et 5-39
BCD Correction Constant Generationo v ittt it e 5-41
BCD Arithmetic Operation TIMiNGo oo vttt e e 5-42
MICASM StatemMENT . . o v v ottt et et ettt it e 5-43
Microinstruction DispatchExample i 5-44
Next MICRO Address Generationoutnienenenneee . 5-45
IRLDISPAtCN . . o v vttt et 5-46
JT7DISPAtCR . . o 5-46
JUZDISPALCR « o v e e et e e 5-47
INT DISPATCH .« « o e v e ot et e ettt 5-47
TMS7000 Group NUMDEIS . . . ot it 5-48
IRH DISPACR .« o o v v v e e et e e e et e 5-49
O DISPAT CH . & o v e e e et e e e e 5-50
Macro Jump CONdItioNS . « .« o v v e it e e 5-50

Xi

5-43 MJMPDispatch
6-1 TMS70XX Read And Write Cycle Timing
6-2 Peripheral Expansion Mode Example

6-3 Memory AddressDecode
6-4 Microprocessor Mode Example
6-5 Asynchronous Communication Format
6-6 VOUnterfaceo
6-7 SWXMIT Routine Flowchart
6-8 SWCRVD Routine Flowchart
6-9 Delay Constants Calculation
6-10 StartBitDetection
6-11 Interrupt4 ServiceRoutine
6-12 HWXMIT Routine Flowehart
6-13 HWRCVD Routine Flowchart
6-14 StatusRegister

6-15 Unsigned System With 8 Bits Of Magnitude: 0-255
6-16 Signed System With 7 Bits Of Magnitude: -127 TO + 127

6-17 SWAP And Rotation Operations oo ..
6-18 Example Of ADispatchTable 0 i ..
6-19 Example Of ASubroutine Call

6-20 Example Of A 16-Bit By 16-Bit Multiplication Subroutine
7-1 Typical Microprocessor Development System
7-2 Typical XDS Configuration
7-3 The XDSModel 22
7-4 Memory Configuration

7-6 The RTC/EVM 7000 Evaluation Module
10-1 Prototype And Production Flow
10-2 DevelopmentFlowchart.
10-3 TiIStandard Symbolization
10-4 Tl Standard Symbolization With Customer Part Number
10-5 Tl Standard Device Symbolization Without On-Chip ROM

10-6 40 Pin Plastic Package, 100 Mil Pin Spacing (N Package)

10-7 40 Pin Plastic Package, 70 Mil Pin Spacing (NSPackage)

10-8 40 Pin Plastic Package, 70 Mil Pin Spacing (JDPackage)
LIST OF TABLES

TABLE

1-1 TMS7000 Family Memberst

1-2 TMS7000 Standard NMOS Product Family: TMS7000, TMS7020, TMS7040,

TMS70120, TMS7001, TMS7041

1-3 TMS7000 Standard CMOS Product Family: TMS70CO00, TMS70C20, TMS70C40 . .

2-1 TMS7000 Family Summary
2-2 Mode Select Conditions
2-3 JOXOMemory Map
2-4 JOXTMemory Map

xii

2-8
2-9
2-10
3-1
3-2
3-3
3-4

3-6
3-7
3-8
3-9
3-10
3-11
312
3-13
3-14
3-15
3-16
317
3-18
3-19
3-20
3-21
41
4-2
4-3
5-1
5-2
5-3

6-2
6-3
6-4
6-5
6-6

6-8
6-9
6-10
6-11
6-12
7-1
7-2
9-1
9-2
10-1

Serial Port Control RegISTErS oottt e 2-33

SC, PE, FE, AND Microprocessor Pin Assignments 2-51
System Emulator Mode Pin Assignments i 2-53
TMS7000 Symbol Definitions v v i 3-2

TMS7000 AddressingMOdEeS oo v vttt 3-3

Implied Operand INStrUCtioNSo oo it 3-9

Machine Instruction Format: Implied Operand Instructions 3-9

Single Operand INStIUCLIONS« vt i vt e 3-9

Machine Instruction Formats: Single Operand instructions 3-10
Dual Operand INStruCtioNS oottt 3-10
Machine instruction Formats: RegisterFile 3-11
Machine Instruction Formats: Peripheral File Instructions 3-12
JUMP INSIIUCHIONS « .+« « ¢ v ot e e et e e e 3-12
Machine Instruction Formats: Simple Relative Instructions 3-13
Machine Instruction Formats: Single Relative Instructions 3-13
Machine Instruction Formats: Dual Relative Instructions 3-14
Machine Instruction Formats: Peripheral Relative Instruction 3-14
Extended Address INStrUCLIONS« o v v ottt e it e e e 3-14
Machine Instruction Formats: Extended Address Instructions 3-15
Machine Instruction Formats: Miscellaneous Instructions 3-15
Machine Instruction Formats: MOVD Instruction o 3-16
TMS7000 Core (Reserved) INStructionso v ittt i e 3-18
TMS7000 Non-Core (Available For Microcode) Instructions 3-20
Conditional Jump INStIUCHIONS oo vt 3-34
TMS70X0 and TMS70X1 Family Features 4-1

TMS70CXO0 Family FEAtUreS o oo e e e 4-16
EPrOMUSE « . o oot oottt e e e e e e e e 4-26
Benchmark 1-6 Comparison (2.5 MHz) 5-9

Microinstruction Word FOrmatottt e i ittt 5-19
MemOrY CONLIOIS v vttt e e e 5-26
Timing Data For Sample CirCuitso oot 6-1

/O PINASSIGNMENTS . . . o oottt e e e e e e 6-13
CycleCalculationottt 6-21
Half Bit Cycles Calculationttt 6-22
Crystal-Dependent Constants For The Software UART 6-23
Serial POrtREGISTEIS .« . . v v vttt et e 6-26
PANALVAIUES INHEX . . o ittt e e e e e 6-34
Classification Of Instructions According To Status Bits Affected 6-48
Compare Instructions Examples: Status Bit Values 6-49
Status Bit Values For Conditional Jump Instructions 6-50
Add And Subtract INSTIUCLIONS . .+« . ottt e e 6-51
Multi-Bit Right Or Left Shifts By Immediate Multiply 6-59
Hardware Configuration Difference Model 22 ToModel33 7-6

EPROMUSE .« o o v e e et et e et e e et e e 7-11
DynamiC LIfE TESt .« o v oo vt e e e 9-3

ENVIrONMENntal TESES .« + v o v e e e e e e e et e e 9-4

Valid ROM Start ADArESSES .« « v« v v v v o v e ettt e e e 10-5

xiii

1.1

1.2

INTRODUCTION
GENERAL

This section of the manual introduces the TMS7000 family of single-chip microcomputers and
presents the underlying design philosophy and information on family support tools and
assistance.

The use of TMS7000 refers to all family members (TMS7000, TMS7020, TMS7040,
TMS70120, TMS7001, TMS7041, TMS70C00, TMS70C20, TMS70C40, SE70P161, and
all future family members) unless otherwise stated.

Sections 2 through 4 present in detail the TMS7000 family architecture, instruction set, and
electrical specifications. These sections present the specifics required by the user to
implement a TMS7000 solution in his application. Application examples for hardware interface
and software algorithms are presented in Section 6 after the reader has acquired a thorough
understanding of the standard instruction set.

Development support tools are an extremely important aspect of microcomputer selection and
algorithm development, Sections 7 and 8 present the support tools and several development
scenarios for the TMS7000 family.

The enormous technological advances in integrated circuits have enabled semiconductor
manufacturers to offer single-chip microcomputers incorporating a central processing unit
(CPU), read only memory (ROM), random access memory (RAM) and input/output (I/O) allon a
single silicon chip. Texas Instruments’ TMS1000 family was the original 4-bit microcomputer
entry. The TMS1000 family’s price, performance, and reliability have made it the industry
leader in a broad range of applications including timers, electronic toys and games, appliance
controls, vending machines, temperature controllers, automotive instruments, test
instruments, and a variety of other controller applications. The TMS9900 family, the industry’s
first 16-bit microcomputer, continues to stand in the fore-front of single-chip microcomputer
products. Recent TMS9900 family introductions include the TMS9995 and TMS99000 which
expand the families use to very high performance applications. It was a logical progression
then, for Texas Instruments to introduce the first fully programmable 8-bit microcomputer, the
TMS7000 family.

The TMS7000 family capitalized on Texas Instruments’ experience and leadership position in
the microcomputer market, thereby introducing a true second generation 8-bit Microcomputer
family. The second generation design approach is evident by the powerful instruction set,
addressing modes, and /O flexibility all centered around the basic register to register
architecture. Flexibility, in hardware and software, was a basic design goal, therefore the
TMS7000 family consists of a variety of RAM and ROM sizes, 1/O functions, and instruction
set definitions, in both NMOS and CMOS, to efficiently address the user’s application
requirements.

BACKGROUND AND DESIGN PHILOSOPHY

Originating from extremely low cost calculator-chip designs, early microcomputers necessarily
implemented extremely simple CPU’s, resulting in primitive instruction sets that made the
simplest programming tasks at best difficult and at worst impossible. This seed of primitive,
hard to program instruction sets continues today in many microcomputers.

The reason for this trend lies in economics, not engineering. Microcomputers are typically used
in extremely high volume applications. The recurring costs of the system, i.e., the price of the

11

1.2.1

1-2

device far outweigh the one-time cost of the program development. So the emphasis is on
building the least expensive device containing the most functionality. It is an established
economic fact of VLSI design that the larger the silicon bar, the more expensive the device.
Therefore a basic question in the design philosophy of microcomputers centers around the
trade-off in bar size between the CPU complexity (which determines the power of the
instruction set) and the amount of program memory, ROM and RAM.

The CPU, which implements the instruction set, is typically made up of: an accumulator and
other registers, an arithmetic logic unit (ALU), a control programmed logic array (PLA), and a
large number of data buses and control lines interconnecting the three. Traditional
microcomputers built with PLA’s and random logic implement the simplest possible CPU to
minimize bar area, resulting in instructions which may be simple to implement in the design of
the bar, but extremely difficult to program. In these traditional microcomputers, the trade-off in
maintaining minimum bar area through implementation of a simple CPU, is at the expense of
larger ROM and RAM requirements to implement the user’s algorithm with the resulting
primitive instruction set. One example of this is the restriction among many first generation
microcomputers limiting jumps to within the same page of ROM.

It is fact that the larger the bar, the more expensive the device, however, this does not imply
that a more powerful CPU cannot be implemented on a single microcomputer chip without
increasing the bar size and cost of the device. The issue lies in the traditional design and layout
of microcomputers. Two significant design innovations have allowed the TMS7000 family to
provide true second generation capabilities and still maintain an extremely small bar and low
cost. These innovations in microcomputer design philosophy are:

e Strip Chip Architecture Topology (SCAT)
* Microprogramming
Strip Chip Architecture Topology (SCAT)

SCAT is Texas Instruments’ term for the design philosophy which incorporates the
non-memory elements of a microcomputer architecture (the registers, ALU and control logic) in
a strip of vertical blocks in the logic design. Figure 1-1 shows the overall layout of the
TMS7020, the 2K ROM version of the TMS7000 family. The row of blocks labeled “‘timer”’,
"‘I/O control”, etc., is called the “’strip”’, and all of the logic is implemented in the early mask
steps of the silicon bar itself. Most of the interconnection between the blocks (in the form of
data and address buses) is implemented on a layer of metal over the silicon. As a result,
valuable bar area is not wasted in providing the interconnect of the logic elements. This is the
essence of SCAT, designing the structures of the entire bar before logic design begins, so that
logic element and interconnect space requirements are minimized, thereby reducing the cost of
the chip.

The modularity of SCAT inherently enable existing TMS7000 designs to be easily modified and
additional features implemented to create new members of the TMS7000 family customized
to the user’s needs. The indirect benefit which SCAT offers to the user is a full featured product
family with various ROM, RAM, and I/0 configurations, as well as greatly reduced design cycle
time and minimum bar size of all subsequent family additions. Examples of SCAT designs are
the doubling of the ROM from 2K bytes (TMS7020) to 4K bytes (TMS7040), and the addition
of the UART function to the 4K byte member (TMS7041).

1.2.2

s | e seaen [Lol el P
CONTROL

W1 82

—meam]
-z

waz-

X.
pecooe TIMER 2 BYTE

nCw<

[
128
" 1O CONTRL —
MICRO INTERRUPT 80
osc ENTRY POINT useR of 157
=z 87
L] —e
H2 STATUS S £ 85
proGRAmmaBLE (8] B <
8CD s E -
-
e CooE T A V3
CHG P
AW § § & 1
o7 MASK ROM = 86
WD PN 2

ROM OUTPUT MUX & BUFFER

[T —_—
os
oM 83
D4
RAM
REF
03 MEMORY XDEC vaure |x oEC
CONTROL & GRP DECODE we

)
D CONTROL

02
o1 § 0o cofC fjc2|c ce fcs | csfocr

veC

FIGURE 1-1 — TM§7020 MICROCOMPUTER BAR PLAN
Microprogramming

Another important feature of the TMS7000 family is the Microcode Control Rom (CROM) and
the internal control of the TMS7000 by microprogramming. Most other microcomputers
implement their internal control by a programmed logic array (PLA). Each instruction execution
is divided into a number of ‘‘states’’ and on each state the PLA outputs both the current control
signals and the next state number. The PLA is a very compact logic structure, but it still leaves

the problem of routing the relevant control signals throughout the rest of the bar for decoding
and control.

With a microprogramming Control ROM, all of the necessary control signals are contained in a

single microinstruction. The outputs of the microcode CROM are made available lengthwise

down the microcode CROM. Like any other ROM, each microinstruction has its own address,
and when it is read, it immediately supplies the control signals horizontally across to the strip,
right where they are needed. No complex routing or combinational logic is required. The block

of logic called ““entry point”’ in the strip calculates the next address to feed to the microcode

CROM, and the ““micro state’’ is entered. Because a ROM is more compact than a PLA, more

contro! transistors can be built in the form of a microcode CROM than in a PLA, therefore a

more powerful TMS7000 family standard instruction set was implemented in the microcode

CROM than in an equivalent bar area for a PLA and control decode approach. The benefits to

the user of the microcode CROM with the standard instruction set are smaller bar size, thereby

reducing the cost of the device, and the implementation of a more powerful instruction set

since all CPU control is provided directly by the microcode CROM.

Another direct benefit for the user is the ability of the TMS7000 family microcode CROM to be
re-microprogrammed by the user, modifying the standard instruction set to optimize the
TMS7000 in the user’s application. A user defined instruction set provides the advantages of
faster throughput, more efficient utilization of program ROM memory, and improved system
security through unique software algorithms. The ability to re-microcode the TMS7000 family
also provides an alternate solution for designs initially using the standard instruction set, but
encountering a critical timing loop or macro code ROM space limitations, thereby avoiding
system redesign through re-microprogramming of the TMS7000.

13

1.3

1-4

Microcoding of the TMS7000 family can be performed by the user, an independent consultant,
the Regional Technology Center (RTC), or the factory. Full support in the form of
documentation, microassemblers, and in-circuit emulators are described in Section 5.

KEY FEATURES OF THE TMS7000 FAMILY

Microprogrammable instruction set
Strip Chip Architecture Topology (SCAT) for rapid family expansion
Register-to-register architecture
Family members with 2K, 4K, and 12K bytes of on-chip ROM and ROMless versions
On-chip 8-bit timer/event counter with:
— Programmable 5-bit prescale
— Internal interrupt with automatic reloading
— Capture latch
U] 128-byte RAM register file
Full-feature data/program stack
32 Individual I/0 pins:
— 16 bi-directional pins
— 8output pins
— 8 high-impedance input pins
— Memory-mapped ports for easy addressing
* 256-byte peripheral file
. Memory expansion capability:
— 64K byte address space
8-bit instruction word
Eight powerful addressing formats including:
— Register-to-register arithmetic
— Indirect addressing on any register pair
— Indexed and indirect branches and calls
Two's complement arithmetic
Single-instruction binary coded decimal (BCD) add and subtract
Two external maskable interrupts
Flexible interrupt handling:
— Priority servicing of simultaneous interrupts
— Software execution of hardware interrupts
— Precise timing of interrupts with the capture latch
— Software monitoring of interrupt status
Accurate pulse width measurement and modulation
Silicon gate NMOS and CMOS, 5-volt power supply
40-pin, 600 mil, dual in-line package
100-mil or 70-mil pin-to-pin spacing packages

Tables 1-1, 1-2, and 1-3 present the features and benefits of the TMS 7000 family in
addressing the user’s application requirements.

TABLE 1-1 — TMS7000 FAMILY MEMBERS

708a. | 7020 | 7040 | 70120 | 7001 | 7041 |70P181 | 70c00 | 70C20 | 70C40
16K
EPROM
ON-CHIP ROM (BYTES) NONE | 2K aK 12 | NONE | 4K |y | NONE | 2K aK
BACK
ON-CHIP RAM (BYTES) 128 128 128 128 128 | 128 128 128 128 128
INTERRUPT LEVELS a 4 4 4 6 6 6 a a 4
GENERAL PURPOSE 128 128 128 128 128 128 128 128 128 128
INTERNAL REGISTERS
13-BIT | 13-BIT | 13-BIT
- . . BIT 13-8IT | 13-8IT | 13BIT
TIMERS 13817 | 13817 | 13817 | 1387 | 18I0 ISR ASE
1/0 LINES:
BI-DIRECTIONAL 16 16 1% 16 2 22 22 16 16 16
INPUT ONLY 8 8 8 8 2 2 2 8 8 8
OUTPUT ONLY 8 8 8 8 8 8 8 8 8 8
SERIAL |SERIAL | SERIAL
ADDITIONAL 1/0 - PO |SERALISERAL] - - -
PROCESS
TECHNOLOGY nmos | nmos | nmos | nmos | nmos | nmos | nmos | cmos | cmos | cmos

TABLE 1-2 — TMS7000 STANDARD NMOS PRODUCT FAMILY TMS7000, TMS7020, TMS7040, TMS70120, TMS7001,

TMS7041

CUSTOMER NEED

FEATURES

BENEFITS

® SATISFY COMPLEX
APPLICATIONS

* SECOND GENERATION
8 BIT MICROCOMPUTER

* ADDRESSES HIGH
PERFORMANCE PRODUCTS

e PRODUCT UPGRADE WITH
NO SOFTWARE REDESIGN

* WIDE SPECTRUM OF
FAMILY MEMBERS NOW.
ALL FUTURE MEMBERS
SOFTWARE COMPATIBLE

* INCREASE CAPABILITY WITHOUT
HARDWARE CHANGE;
BUILDS ON PRIOR SOFTWARE
EFFORTS

* LARGE MEMORY FOR DATA,

HIGH-LEVEL LANGUAGES,
VOCABULARIES

* UPTO12KBYTES OF
ON CHIP ROM

* 3 DEVICES FOR THE PRICE
OF 1.5.

¢ FEWER EXTERNAL
1/0 CHIPS

e 161/OPINS
(INDIVIDUALLY DIRECTION
PROGRAMMABLE),
8 INPUT ONLY
(1/0 ON 7001/7041),
8 OUTPUT ONLY

* MINIMUM SYSTEM COST
THROUGH FLEXIBLE
1/0 STRUCTURE

* HIGH THROUGHPUT AND
CODE DENSITY, MINIMUM
PROGRAMMING TIME

e 8X8 MULTIPLY, BCD/
BINARY ADD/SUBTRACT,
SINGLE AND DOUBLE
PRECISION, S/W TRAPS, 1/0
INSTRUCTIONS 9 ADDRESSING
MODES

* FLEXIBLEAND EASY TO USE
INSTRUCTION SET

* REAL-TIME CONTROL

¢ ON CHIP TIMERS

* ELIMINATES EXTERNAL PARTS

* COMMUNICATIONS LINK

* ON-CHIP UART (SERIAL PORT
ON 7001/7041)

* ELIMINATES NEED FOR
EXTERNAL UART PARTS;
LOWER SYSTEM COST

1-5

TABLE 1-3 — TMS7000 STANDARD CMOS PRODUCT FAMILY TMS70C00, TMS70C20, TMS70C40*

CUSTOMER NEED

FEATURES

BENEFITS

e BATTERY POWER OPERATION

¢ CMOS TECHNOLOGY, 6 MA
TYPICAL SUPPLY CURRENT

* USEABLE IN PORTABLE
APPLICATIONS, LOW COST
POWER SUPPLY OR BATTERY

e LESS POWER CONSUMPTION
DURING STANDBY

* WAKE-UP MODE = 500 UA,
HALT MODE = 250 UA

e BATTERY LONGEVITY

* INEXPENSIVE POWER SUPPLY,
OPERATES ON LOW BATTERIES

* 3V-6VPOWER REQUIREMENT

¢ TOLERANT POWER
SUPPLY VOLTAGE

e OPERATIONIN AN
ELECTRICALLY NOISY
ENVIRONMENT

* INCREASED NOISE MARGIN
WITH CMOS INPUTS

* GREATER IMMUNITY TO
ELECTRICAL NOISE

e ADDED SYSTEM FUNCTIONS
WITH EXISTING POWER SUPPLY

* LOWER OPERATION POWER

¢ EXTENDED PRODUCT LIFE

* CMOS FEATURES INCLUDE MICROPROGRAMMABILITY, SCAT AND S/W COMPATIBILITY WITH NMOS VERSIONS

1.4

1.4.1

1-6

SUPPORT

Tl offers extended development support that consists of the following facits:
e Development Tools

* Hotline Assistance

* Training Support

e Application Expertise

Development Tools

A microcomputer product, being complex and mask ROM programmed, must be supported by
high level development tools to facilitate ease of application development and verification, and
increase development productivity. The TMS7000 family of 8-bit microcomputers has
available a complete spectrum of development tools from single board systems to full scale
development systems. Each provides in-circuit emulation, with various levels of development
and debug capability. The XDS (Extended Development Support) concept provides host
independent in-circuit emulation and debug. When coupled with the transportable crossware
(cross support software package), which operates on the system already familar to the user,
the TMS7000 family will provide the user with a cost effective approach to full scale
microcomputer development. The AMPL-7000 Development System provides for standard
macrocode development and emulation as well as microcode support for those applications
utilizing this capability. The single board evaluation module (EVM) has been developed for
evaluation and basic in-circuit emulation of the TMS7000 family in an extremely cost effective
manner. The SE70P161 prototyping component is provided to support form factor emulation
in the user’s application. In addition to these development tools to support system

1.4.2

143

development through in-circuit emulation, the TMS7000 family is supported by software
development tools through several third party independent sources. This wide range of
development tools provides the user with options to select the appropriate level of support
required for his application development. Development support tools and independent support
are described in Sections 7 and 8.

Hotline Assistance

Customers may call into one of the worldwide Regional Technology Centers (RTC) for
assistance on TMS7000 family development. Whether it be an elaboration of the basic
instruction set or a question regarding the microcomputer architecture, the RTC’s have the
expertise and tools to provide the answer. Please consult the following list and contact the
closest RTC if assistance is needed.

Atlanta Boston Chicago

Texas Instruments, Inc. Texas Instruments, Inc. Texas Instruments, Inc.
3300 N.E. Expressway 400-2 Totten Pond Rd. 515 W. Algonquin Rd.
Building 8 Waltham, MA 02154 Arlington Heights, IL
Atlanta, GA 30341 (617) 890-6671 (312) 640-2909

(404) 452-4682 (617) 890-4271 Hotline (312) 628-6008

(404) 452-4688 Hotline

Northern California Southern California Dallas

Texas Instruments, Inc. Texas Instruments, Inc. Texas Instruments, Inc.
5353 Betsy Ross Drive 17981 Cartwright Rd. 101 E. Campbell Road
Santa Clara, CA 95054 Irvine, CA 92714 Richardson, TX 75081
(408) 748-2220 (714) 660-8140 (214) 680-5066
(408) 980-0305 (714) 660-8164 (214) 680-5096
Bedford, England Freising, West Germany

Texas Instruments, LTD Texas Instruments Deutschland GmbH

Manton Lane Haggertystr. 1

Bedford, MK41 7PA 8050 Freising

0234 223000 08161 800

Tokoyo, Japan Hannover, West Germany

Texas Instruments Japan Texas Instruments Deutschland GmbH

Aoyama Fuji Bldg. Kirchhorsterstr Str 2

6-12, Kita Aoyama 3 Chome 3000 Hannover 51

03-498-2111 0511/643021

Training Support

The Regional Technology Centers (RTC’s) offer courses for the benefit of customers requiring
engineering details on Texas Instruments’ parts for design or evaluation purposes. Information
(description, schedules, entry instructions) regarding any of the RTC seminars may be obtained
by contacting the local RTC.

All courses are offered on a regularly scheduled basis in the RTC, but can also be presented at
the customer’s location when more than four to five students request training.

17

1.4.3.1

1.4.3.2

144

18

Two courses are offered for the TMS7000 family of Microcomputers:
¢ TDC-700-TMS7000 Family System Design

e ATS-710-TMS7000 Family Microprogramming

TDC-700-TMS 7000 Family Systems Design

The TMS7000 family Systems Design course is an introduction to the TMS7000 family of
single-chip microprocessors. Leading off with a description of the chip architecture, the course
gives an understanding of instruction set usage in example situations. The labs give hands-on
experience with the TMS7000 and its development systems. Experience in assembly language
programming and microprocessor/microcomputer hardware design is a prerequisite.

ATS-710-TMS7000 Family Microprogramming

The TMS7000 family Microprogramming course is intended for engineers who need to
customize the standard microcoded instruction set to better suit their needs. It starts with an
introduction to microprogramming in general and leads into the specifics of microprogramming
the TMS7000 family.

Through examples, students learn the opeiation of the standard instruction set and how to
customize it to efficiently implement new instructions through microcoding. Testing
considerations are discussed and hands-on lab sessions allow the student to gain experience in
the use of development software. Experience in assembly language programming and a basic
familiarity with the TMS7000 instruction set and architecture is a prerequisite.

Design Expertise

Texas Instruments can provide in-depth technical design assistance through consultations
with contract design services. This assistance can take many forms that encompass the
application hints in this document to the application groups in the factory and the design
assistance teams in the RTC. Contact your local Field Sales Engineer for current information.

TMS7000 FAMILY ARCHITECTURE

Throughout this manual the term TMS7000 family or TMS7000 will include all of the members
of the group. The term 70X1 refers to those devices containing a serial port (7001, 7041 and
70P161). The term 70XO refers to those devices which do not contain a serial port (7000,
7020, 7040, 70120, 70C00, 70C20, 70C40). The major components of the TMS7000 family
internal architecture are shown in Figure 2-1. For a more detailed description consult the
TMS7000 FAMILY MICROARCHITECTURE USER’S GUIDE (MPO61). The main features of the
TMS7000 family devices are summarized in Table 2-1.

CENTRAL EXTERNAL INTERFACE
PROCESSING r— "\ \
UNIT A - PORT A
8
L3 - —§» PORT B
8
Ys A8 As 7 A ——q PORT C
MD AH AL C 8
‘_‘———/——N PORT D
¢
PERIPHERAL
—» /MEMORY ¢ 2 <« RESET
CONTROLLER < 7~ <« INT1, INT3
—@ MEMORY CONTROL (MC)
2
4—+—< CRYSTAL
2
< <4—F~—d4 Vce Vss
RAM
| 1288 40 PINS TOTAL
ROM
TYPICALLY
L————P 2K/4K x 8

FIGURE 2-1 — TMS7000 INTERNAL ARCHITECTURE

21

TABLE 2-1 — TMS7000 FAMILY SUMMARY

GROUP 70X0 70X1
—70CX0—
DEVICE 7000 7020 7040 70120 [70C00 70C20 70C40 | 7001 7041 70P161
ROM o] 2K 4K 12K o] 2K 4K o 4K 16K
External
RAM 128 128 128 EPROM
TYPE NMOS CMOSs NMOS
TIMERS 1 1 3
70120
Int. CLOCK 2.5MHz 2.5 MHz 1.76 MHz 2.5 MHz
INTERRUPTS 3 + RESET 3 + RESET 5 + RESET
INT TYPE 3 LATCHED and LEVEL 1 LATCHED 3 LATCHED and LEVEL
2 LATCHED and LEVEL
SERIAL PORT NO NO YES
GENERAL PURPOSE
INPUT PINS 8 8 2
GENERAL PURPOSE
OUTPUT PINS 8 8 8
GENERAL PURPOSE
1/0 PINS 16 16 22
CLOCK OPTNS divide by 2 or 4 /2 only 12,14
VOLTAGE 5V 3V-6V 5V
OTHER LOW POWER ASYNCH AND SYNCHR
HALT MODE SERIAL PORT, MULTI-
WAKE-UP MODE PROCESSOR COMMUN.
CASCADEABLE TIMERS
ON-CHIP RAM AND REGISTERS

The TMS7000 family has a maximum memory address space of 64K bytes. On-chip and Off-chip
memory address spaces vary according to the particular TMS7000 family member used (see
Tables 2-3 or 2-4) and the operating mode selected (see Section 2.3). In the sections that follow,
the Register File (RF) and the Peripheral File (PF) are described along with three important registers
in the CPU: the Stack Pointer (SP), the Status Register (ST), and the Program Counter (PC).

Register File (RF)

The 128-byte on-chip RAM resides in locations >0000 to >007F (‘>’ means hex) of the
TMS7000’s address space and is called the Register File (RF). The RAM is treated as registers by
much of the instruction set and is numbered RO - R127. The first two registers, RO and R1, are also
called the A and B registers respectively. Several instructions specify A or B as either the source or
destination register, e.g., STSP stores the contents of the Stack Pointer (SP) in the B register.
Except where stated otherwise, any register in the Register File can be addressed as an 8-bit
source or destination register.

The stack is also located in the Register File. Refer to Section 2.1.3 for information regarding the
initialization of the Stack Pointer (SP) and stack definition in the Register File.

2.1.2

214

Peripheral File (PF)

The Peripheral File (PF) resides in locations >0100 to >01FF of the TMS7000’s address space.
Some of the TMS7000 instructions are optimized for efficient access to and from registers that
reside in the peripheral file. Peripheral File locations are numbered PO - P255. The PF registers are
used for memory expansion, interrupt control, parallel I/O ports, timer control, and serial port
control (if available).

Stack Pointer (SP)

The Stack Pointer (SP) is an 8-bit register in the CPU that is typically used to hold a pointer in RAM

(the Register File). However, the SP can also be used as temporary data storage if a stack is not

implemented, or if the SP contents are not needed. When a stack is implemented, the SP points to

the last or top entry on the stack. The SP is automatically incremented just before data is pushed

onto the stack and automatically decremented immediately after data is popped from the stack.
Upon assertion of the RESET function (see Section 2.5), >01 is loaded into the SP. The size of the

stack can be changed from the 126-level stack at RESET to a smaller stack by executing a stack

initialization program as illustrated in Figure 2-2. This feature allows the stack to be located

anywhere in the Register File. The SP is initialized through the B register (R1).

INIT MoV % >60,B
LDSP

>0000

TOP OF STACK ON RESET — >0001 . Increment
. . PUSH then
. store

INITIAL TOP OF STACK — >0060

POP Fetch
. . then
UPPER STACK LIMIT — >007F decrement

FIGURE 2-2 — EXAMPLE OF STACK INITIALIZATION IN THE REGISTER FILE
Status Register (ST)

The Status Register (ST) is an 8-bit register in the CPU that contains three conditional status bits;
Carry (C), Sign (N), Zero (Z), and a global Interrupt Enabie bit (I) as shown in Figure 2-3.

7 6 5 4 3 2 1 [}

| 1 1
c N | Z 1 FUTURE USE
1 1 |
C - CARRYOUT
N - SIGN
Z - ZERO
1

- INTERRUPT ENABLE

FIGURE 2-3 - STATUS REGISTER (ST)

2-3

2.1.5

2.2

24

The C, N, and Z bits are used mostly for arithmetic operations, bit rotating, and conditional
branching. The Carry (C) bit is used as the carry-in and the carry-out for most of the rotate and
arithmetic instructions. the Sign (N) bit contains the most significant bit of the destination operand
contents after instruction execution. The Zero (Z) bit contains a one when all bits of the destination
operand are equal to zero after instruction execution. The C, N, and Z status bits also have
jump-on-condition instructions associated with them. The global Interrupt Enable (l) bit must be set
to one by the EINT instruction in order for any of the individual interrupts (INTn) to be recognized by
the CPU. The Interrupt Enable (I) bit can be cleared by the DINT instruction or by executing a device
RESET (see Section 2.5.2). A detailed description of the condition of these bits for each instruction
is described in the TMS7000 ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE (MP916).

Program Counter (PC)

The TMS7000’s 16-bit Program Counter (PC) consists of two 8-bit registers in the CPU which
contain the MSB and the LSB respectively of a 16-bit address: the Program Counter High (PCH)
and Low (PCL). The PC acts as the 16-bit address pointer of the opcodes and operands in memory
of the currently executing instruction. Upon assertion of the RESET function, the MSB and the LSB
of the PC are loaded into the A and B registers of the Register File (see Section 2.5.2).

ON-CHIP GENERAL PURPOSE I/0 PORTS

The TMS7000 family members have 32 I/O pins organized as four 8-bit parallel ports labelled Ports
A, B, C, D. Each port is mapped into an 8-bit data value register in the Peripheral File (PF) depending
upon the memory mode configuration of the device. The data value registers are usually called
APORT, BPORT, CPORT, and DPORT in a program. Ports C and D are implemented as bidirectional
1/0 ports on all TMS7000 family devices. In addition, Port A is also partially implemented as a
bidirectional port on all TMS70X1 devices. Each bidirectional 8-bit port has a corresponding 8-bit
Data Direction Register (DDR) that programs each /O pin as an input or output. A bit set to one in
the DDR wiill cause the corresponding pin to be an output, while a zero in the DDR will cause the pin
to be a high impedance input. Upon RESET, the DDR flip-flop registers are set to zero by the on-chip
circuitry, forcing them to become inputs. Likewise, the output DATA flip-flop registers are set to
one by on-chip circuitry upon RESET. After RESET, if ‘1’s are written to the DDR register sometime
before the output data register is changed then the corresponding I/O pins will output a ‘1. For this
reason, it is good practice that Ports A, C and D output data registers be loaded with the desired
value before any bits are configured as outputs. The logic for each bidirectional I/O line is shown in
Figure 2-4.

DATA
READ
DDR
OUTPUT READ
ENABLE a DDR
D e
+ DDR WRITE
FLIP- ¢—— DDR
_FLOP WRITE
Q STROBE
—
1/0
OUTPUT
PIN V‘ DATA
e [ouTruT
VALUE 1a D WRITE
DATA
3.STATE FLIP- G————— DATA
_FLopP WRITE
DRIVER 5 STROBE

FIGURE 2-4 — BIDIRECTIONAL /0 LOGIC

If a port is bidirectional, i.e., if it is Port C or D on the 70X0 devices, or Port A, C, or D on the 70X1
parts then a single pin in the port may be used for both input and output by modifying its Data
Direction Register bit. As shown in Figure 2-4, the output value in the DATA flip-flop register is not
changed when the DDR flip-flop bit is switched into the input mode.

The characteristics of the four Ports A, B, C, D can be summarized as follows:

Port A: On the 70XO0 parts, Port A is an 8-bit high impedance input only port, providing
eight general-purpose input lines. Pin A7 may also be used to clock the on-chip
timer/event counter. On the 70X1 parts, bits 0-4 and bit 7 of Port A are
bidirectional I/O lines. Port A pins A5 and A6 are input only pins that also have
other functions when using the serial port. Pin A5 is RXD which receives
incoming serial data and pin A6 is the serial clock output or the serial clock
input. Pin A6 and A7 may also be used to clock the on-chip timer/event
counters, Timer 1 and Timer 2 respectively, of the 70X1 devices.

Port B: When in the single chip mode, Port B is an eight bit general-purpose output
port. In all other modes, Port Bis split into two parts with the lower nibble (pins
BO-B3) being general-purpose output only pins and the most significant nibble (
pins B4-B7) are the bus control signals: ALATCH, R/W, ENABLE, and CLOCK
OUT. On 70X 1 devices, pin B3 is also the serial output line (TXD) for the serial
port.

Port C: In Single-Chip Mode, Port C is an 8-bit bidirectional I/O port where any of its
eight pins may be individually programmed as an input or output line under
software control. In any other mode, Port C becomes a multiplexed
address/data port for the off-chip memory bus; in this case, the least significant
byte of a 16-bit address is provided followed by 8-bits of read or write data.

2-5

2.3

2-6

Port D: In Single-Chip or Peripheral Expansion Mode, Port D is an 8-bit bidirectional /0O
port where any of its eight pins may be individually programmed as an input or
output line under software control. In Full Expansion and Microprocessor
Modes, Port D provides the most significant byte of the 16-bit address.

Further details of I/0 and memory operations are contained in the memory mode sections in

Section 2.3.

MEMORY MODES

The TMS7000 can be reconfigured to reference up to 64K bytes of ROM and RAM. Five memory
modes can be selected by a combination of software and hardware: the Single-Chip, Peripheral
Expansion, Full Expansion, Microprocessor, and System Emulator modes. The Mode Control (MC)
input pin, if at a logic one, will force the TMS7000 into the Microprocessor Mode. If the MC pin is
held at + 14 volts, the TMS7000 will enter the System Emulator mode. If the MC pin is held at
logic zero, the remaining memory modes are selected by the two MSBs of the I/0 Control Register

(IOCNTO). i.e., bits 6 and 7, as shown in Table 2-2.

TABLE 2-2 — MODE SELECT CONDITIONS

MODE SELECT CONDITIONS

MODE CNTL 1/0 CONTROL

MODE PIN REG.BIT 7, 6
Single-Chip ov (0] [o]
Peripheral Expansion ov (o] 1
Full Expansion ov 1 (o]
Microprocessor vce X X
System Emulator +14V X X

NOTE: X = Don't Care

Upon RESET, the IOCNTO Register is set to zeros. Refer to Section 2.5.2 for a detailed description
of RESET and the recommended initialization procedure for the IOCNTO Register. The five memory
modes are summarized in Table 2-3 and 2-4 and described in the following paragraphs.

>007F-
>0080-
>OO0FF-
>0100-
>010B-
>010C-
>0200-

>CO000-

>DO000-

>F000-

>F800-

> FFFF-

>0000-
>007F-
>0080-
>QOFF-
>0100-
>0117-
>0118-
>O1FF-
>0200-

>FO000-

> FFFF-

TABLE 2-3 — 70X0 MEMORY MAP

SINGLE CHIP PERIPHERAL EXP FULL EXPANSION MICRO. EMULATOR
REGISTERFILE
RESERVED FOR FUTURE EXPANSION
ON CHIP /O { TIMERS, INTERRUPTS, /0 PORTS)
PERIPHERAL EXPANSION
NOT AVAILABLE
NOT AVAILABLE
MEMORY EXPANSION
70120 70120 70120
7040 7040 7040 TMS7000
70C40 70C40 70C40 USES THESE
7020 7020 7020 MODES ONLY
12K | 4K |70c20| 12k | 4K |[70C20| 12K | 4K [70C20 {No on-chip ROM)
ROM | ROM | ROM | ROM | ROM | ROM | ROM | ROM | ROM
SINGLE CHIP PERIPHERAL EXP FULL EXPANSION MICRO- EMULATOR
PROCESSOR
TABLE 2-4 — 70X1 MEMORY MAP
SINGLE CHIP PERIPHERAL EXP FULL EXPANSION MICRO. EMULATOR
REGISTER FILE
RESERVED FOR FUTURE EXPANSION
ON CHIP 1/O (TIMERS, INTERRUPTS, I/O PORTS,SERIAL PORT)
PERIPHERAL EXPANSION
NOT AVAILABLE MEMORY EXPANSION
7001 USES
7041 ON-CHIP PROGRAM ROM, 4K BYTES ONLY THESE
MODES.
SINGLE CHIP PERIPHERAL EXP FULL EXPANSION MICRO- EMULATOR
PROCESSOR

2.3.1

2-8

SINGLE-CHIP MODE:

In the Single-Chip mode, all 32 I/O pins are used for input/output, and no off-chip memory bus
is implemented. All programs and data reside in the on-chip ROM and RAM.

PERIPHERAL EXPANSION MODE:

In the Peripheral Expansion mode, the Peripheral File addresses are available externally. 20 of
the 32 general purpose /O lines are still used as general purpose I/0 and 12 pins implement a
multiplexed 8-bit address/data bus and a 4-bit control bus. Out of the total 256 addresses in
the Peripheral File, 246 of these are memory mapped externally on the 70X0 devices and 238
are mapped externally on the 70X1 devices. This expansion mode may be used to address
ROM, RAM, or peripheral devices.

FULL EXPANSION MODE:

In the Full Expansion mode, 12 of the 32 I/O pins are used for general purpose 1/0. The
remaining 20 I/O pins are then used to implement a 8-bit most significant address bus, a
multiplexed 8-bit least significant address and 8-bit data bus, and a 4-bit control bus, to
external memory. The on-chip ROM is still used, but additional off-chip memory for program or
data storage may also be referenced.

MICROPROCESSOR MODE:

In the Microprocessor mode, the 32 I/O pins are in the same configuration as in the Full
Expansion mode. However, the addresses for the on-chip ROM are located off-chip, allowing
the user’s program to be prototyped in EPROM. Since the TMS7000 and TMS7001 have no
on-chip ROM, this mode and the emulator mode are usually the only modes in which they can
operate.

SYSTEM EMULATOR MODE: The System Emulator mode is provided for self-emulation and
system development. No on-chip I/O is implemented. In addition, the on-chip timer and
interrupt controls are disabled.

Single-Chip Mode

In the Single-Chip mode, the TMS7000 functions as a standalone microcomputer with no
off-chip memory expansion bus. The 32 1/0 lines may be used for various purposes, such as
scanning keyboards, driving displays, and controlling other mechanisms. The four ports are
configured as shown in Figure 2-5.

a)

b)

P]O INPUT
A7 | LINES
BO
| OUTPUT
LINES
B7
TMS70X0
C|0 BIDIRECTIONAL
o LINES
DIO BIDIRECTIONAL
o7 LINES
A5/RXD
$— A6/SCLK
Y \ 4
A5 A6
A0-A4 C> BIDIRECTIONAL
A7 LINES
B0—B2 OUTPUT
B4_B7 LINES
TMS70X1
. BIDIRECTIONAL
co-C7 <:> LINES
BIDIRECTIONAL
Do-D7 Q LINES
B3

- B3/TXD

FIGURE 2-5 — 1/0 PORTS: SINGLE-CHIP MODE

29

210

Table 2-3 and 2-4 illustrate the Single-Chip mode memory map. The unused Peripheral File (PF)
locations and off-chip memory addresses are not available. When reading from unavailable
addresses, an undefined value is returned. Writing to these addresses has no effect. Peripheral
File registers, PO-P11, are used to reference the 1/O ports and other on-chip functions. Table
2-5 and 2-6 list the Peripheral File (PF) registers that are available in the Single-Chip mode
configuration.

TABLE 2-5 — TMS70X0 PERIPHERAL MEMORY MAP

SINGLE CHIP PERIPHERAL EXP. FULL EXPAND. MICROPROCESSOR
>0100- I/0 CONTROL REGISTER (IOCNTO) PO
>0101- RESERVED P1
>0102- TIMER DATA (TIDATA) P2
>0103- TIMER CONTROL (TICNTL) P3
>0104- PORT A DATA VALUE (APORT) P4
>0105- RESERVED P5
>0106- | —BITS0-3 — PORT B DATA VALUE (BPORT) P6
>0106- | PORT B DATA | PERIPHERAL EXPANSION —BITS4-7 — P6
>0107- RESERVED P7
>0108- | PORT C DATA P8
>0109 |C PORT DATA PERIPHERAL EXPANSION P9

DIRECTION

(CDDR)
>010A [PORT D DATA VALUE (DPORT) P10
>010B- ;D PORT DATA

DIRECTION REGISTER (DDDR) P11
>010C- P12

UNUSEABLE PERIPHERAL EXPANSION

P255
>01FF- FULL

SINGLE CHIP PERIPHERAL EXP MICROPROCESSOR

EXPANSION

NOTE: There are no on-chip peripheral registers in the Emulator mode.

TABLE 2-6 — TMS70X1 PERIPHERAL MEMORY MAP

SINGLECHIP | PERIPHERALEXP. | MEMORY EXP. | MICROPROCESSOR
>0100- I/0 CONTROL REGISTERO (IOCNTO)
>01014 RESERVED
>01021 TIMERDATA (T1DATA)
>01031 TIMERCONTROL ~ (T1CNTL)
>0104 PORT ADATAVALUE (APORT)
>0105- PORT A DATA DIRECTIONREG. (ADDR)
>0106{ —BITSO-3— PORTBDATAVALUE (BPORT)
>0106{ PORTBDATA |PERIPHERALEXPANSION — BITS 4-7—
>0107 RESERVED
>0108{ PORT C DATA
>01094 C PORT DATA PERIPHERAL EXPANSION

DIRECTION (CDDR)
>010A{ PORT D DATA VALUE (DPORT)
>010B{ D PORT DATA DIRECTION REG. PERIPHERAL EXPANSION
>010C{ UNUSEABLE
>010F-
>0110- /0 CONTROLREGISTER 1 (IOCNT1)
>0111{ firsttime SERIALMODE (SMODE)
write SERIALCONTROLO (SCTLO)
read STATUSREGISTER (SSTAT)

>01121 TIMER2DATA (T2DATA)
>01131 TIMER2 CONTROL (T2CNTL)
>01144 TIMER3DATA (T3DATA)
>0115 SERIALCONTROL (SCTL1)
>0116- RECEIVER BUFFER (RXBUF)
>01171 TRANSMITTERBUFFER (TXBUF)
>0118{ UNUSEABLE PERIPHERAL EXPANSION
>01FF-

SINGLECHIP | PERIPHERALEXP | MEMORY EXP | MICROPROCESSOR

P1

P2

P3

P4

P5

P6

P6

P7

P8

P9

P10
P10
P12-

P15
P16

P17

P18

P19

P20

P21

P22

P23

P24-
P255

212

Port A is referenced as PF Register P4 (APORT). When P4 is read, such as with a move from PF
(MOVP) instruction, the value on the Port A input pins is returned. The input data is read
approximately two machine cycles before the completion of the instruction.

Bit AO is the LSB, and bit A7 is the MSB of Port A. When the on-chip Timer/Event Counter is
placed in the External Event Counter Mode, bit A7 serves as the external clock input, triggering
the Event Counter on every positive-going transition.

On the 70X1 parts, pins AO-A4 and pin A7 are bidirectional I/O pins. Each of these pins can
become either an output or an input pin depending upon the value in the A port Data Direction
Register (ADDR) P5. If a ‘1" is put in the bit position of P5 then the corresponding pin of the A
port is an output. If a ‘0’ is written there, then the A port pin becomes a high impedance input
pin. Refer to Figure 2-4 for a diagram of the bidirectional I/O logic. On the 70X1 parts, A5 and
A6 have multiple functions. Normally they are both input only pins like the 70X0 parts, but A5
also can be the serial data receiver (RXD). Pin A6 can also be the serial clock I/O pin (SCLK) for
the serial port. It can be either the serial clock output or it can drive the on-chip serial clock
when connected to an external clock. See the serial port section for more information, Section
2.7.2. Pin A6 can also be the external clock input for Timer 2.

The Port B pins always assert the value of the Port B data value register, which is PF Register P6
(BPORT). Writing to P6 loads the Port B register and hence modifies the Port B output pins.
Positive logic is used. While RESET is active, Port B register contents are forced to ones by the
on-chip circuitry.

The C and D ports (CPORT and DPORT) are bidirectional I/0 pins and are located at P8 and P10
of the Peripheral File. Each of these pins can become either an output or an input pin depending
upon the value in the C and D port Data Direction Register (CDDR and DDDR), P9 and P11. If a
“1”is put in a bit position of the DDR then the corresponding pin of the port is an output. If a ‘0’ is
written there, then the port pin becomes a high impedance input pin. Writing to CPORT or
DPORT modifies the programmed output pins but has no effect on the input pins. Reading
CPORT and DPORT provides the input values for input pins and the current output value for
output pins. Refer to Figure 2-4 for a diagram of the bidirectional I/0 logic.

Reading from an output pin (or a bidirectional pin in the output mode) provides the current value
being output on that pin. Peripheral File instructions ANDP, ORP, and XORP perform a
read/modify/write cycle to PF registers so that when applied to a port data register, these
instructions can clear, set, and complement the output pins on the port. The following program
fragment illustrates the use of the I/0 lines in the Single-Chip mode:

23.2

IOCNTO EQU PO

APORT EQU P4
BPORT EQU P6
CPORT EQU P8
CDDR EQU P9
DPORT EQU P10
DDDR EQU P11
RESET MOvVP % >3FIOCNTO Set Single-Chip Mode, enable all interrupts,
clear all pulse flip-flop
L1 movp % >02,DPORT Load Port D with 0000 0010
L2 MOVP % >00,CPORT Load Port C with 0000 0000
MOVP % >FO0,CDDR Config C7-C4 outputs, C3-CO inputs
MOVP % >OF,DDDR Config D3-DO outputs, D7-D4 inputs
ORP % >04,DPORT Set D2
ANDP % >7F,CPORT Clear C7
BTJZP % >08,CPORT,L1 Jump if C3is ‘0’
MOVP % >55,BPORT SetPort Bto 0101 0101
XORP %1,BPORT Toggle bit BO

BTJOP % >41,APORT,L2 Jump if either A6 or AOisa ‘1’

NOTE

The percent sign (%) indicates the Immediate Addressing Mode (see Section 3.1).
The instruction set is described in Section 3.2.

Peripheral Expansion Mode

The Peripheral Expansion mode incorporates features of both the 1/0-intensive single-chip
mode and the memory-intensive Full Expansion mode. Table 2-5 and 2-6 show the memory
maps for the Peripheral Expansion mode. References to addresses in the Peripheral File
(locations >0100 to >01FF) not corresponding to on-chip registers, result in off-chip memory
cycles. During peripheral file instructions, a peripheral file port is read, even if the value is not
needed such as in a MOVP A,P6. If this read is undesirable because of hardware configuration,
a STA (store A) instruction with the memory-mapped address of the peripheral register can be
used.

The ability to reference off-chip addresses permits the TMS7000 to be directly connected to
most of the popular peripheral devices developed for 8-bit microprocessors. The TMS7000’s
Peripheral File (PF) instructions can be used to reference these off-chip peripherals just as easily
as the on-chip PF registers are accessed. In Peripheral Expansion Mode, Port A functions the
same as in Single-Chip Mode.

Port B is divided into two sections: B3-BO function as individual output pins, the same as in
Single-Chip Mode; pins B7-B4, however, function as external memory bus controls as follows:

® Pin B4 (ALATCH) is strobed to logic one while Port C asserts the memory address.
* Pin B5 (R/W) is driven to logic one for a read cycle and to logic zero for a write cycle.

e Pin B6 (ENABLE) is asserted at logic zero whenever an external memory cycle is in
progress.

* Pin B7 (CLOCKOUT) is an output clock intended for general memory control timing.

213

233

2.3.4

2-14

Exact signal timing is described in Section 4.

References to the PF register corresponding to Port B are handled in a special manner. When a
write is done to the Port B data value register, B3-BO output their new value. An external
memory write cycle, writing the full 8-bit Port B value to address >01086, is performed as well.
When a read is done from the Port B data value register, the least significant nibble is provided
by the current value on pins B3-BO. The most significant nibble, however, is obtained from an
external memory read cycle, reading from address >0106. The least significant nibble from
the external memory read cycle is discarded.

Port C functions as a multiplexed address/data port for the memory expansion bus. In normal
configurations, Port C is attached to the input of an 8-bit latch such as an SN74LS373. Signal
B4 (ALATCH) drives the G input of the latch, so that: the outputs follow the inputs while
ALATCH is high, and latch when ALATCH falls. After ALATCH falls, Port C either becomes a
high-impedance input for read cycles or it asserts the output data for write cycles. Port D
functions identically to a bit-programmable bidirectional I/O port, as in the Single-Chip Mode.

NOTE

Because ALATCH and Port C are active for both external and internal (ROM and
RAM) memory cycles, it is recommended that ENABLE be gated with the chip select
input of all external memory devices.

Full Expansion Mode

The Full Expansion Mode may be used to extend the memory addressing capability of the
TMS7000 to its full 64K byte limit. External memory may be accessed with instructions using
the Direct, Register File Indirect, and Indexed Addressing modes of the instruction set. This
capability allows a variety of application requirements to be met by expanding the external
program or data storage.

Full Expansion Mode input/output is identical to the Peripheral Expansion mode except that
Port D is used to output the most significant byte (MSB) of the 16-bit address and is not
available as an I/0 port. The /0 memory assignments for the Full Expansion mode are shown in
Table 2-5 and Table 2-6.

As in the Peripheral Expansion mode, addresses to the Peripheral File (locations >0100 to
>01FF) which are not directly implemented as on-chip registers, result in off-chip memory
cycles. The on-chip Peripheral File registers are listed in Table 2-5 and Table 2-6. Note that the
Port D data value register (DPORT) and the Port D Data Direction Register (DDDR) are
implemented as off-chip addresses in the Full Expansion mode.

Microprocessor Mode

The Microprocessor mode is intended for applications not justifying the use of on-chip ROM.
The port pins are configured exactly as in the Full Expansion mode (see Table 2-2). However,
unlike the Full Expansion mode, no on-chip ROM is referenced in the Microprocessor mode as
shown in Table 2-3. The MC pin must be held at +5 volts to place the device into the
Microprocessor Mode.

235

System Emulator Mode

The System Emulator mode is a special purpose mode designed to support system
development and self-emulation. The TMS7000 is placed in the System Emulator mode by
applying a + 14 volt level to the Mode Control (MC) input pin. This disables all internal ROM and
1/0. In addition, the internal structure for handling interrupts is disabled.

NOTE

The last 48 bytes (>FFDO- >FFFF) of off-chip memory may be assigned to Traps
0-23.

The usefulness of System Emulator Mode is predicated on its flexible interrupt structure. Up to
128 interrupts may be implemented by wire-ORing them to either the maskable interrupt input
(INT) or to the non-maskable interrupt input (NMI).

Both interrupt lines are level-activated in System Emulator Mode. They do not have the pulsed
interrupt latch, as described in Section 2.5.

The processor acknowledges interrupts in the System Emulator mode by asserting an Interrupt

Acknowledge (INTA) output on pin B3 of Port B. This is comparable to the INTA signal sent

from the CPU to internal interrupt logic, described in Section 2.5.3. When INTA is asserted,
external circuitry must apply an 8-bit interrupt code into Port C, which is then used by the CPU

to generate the address of the interrupt vector. The vector address is computed by adding the

interrupt code input to >FFO0O and then rotating the result left one bit. This is the address of the

LSB of the vector: the MSB is in the preceding address.

The interrupt vector is the same as the TRAP instruction opcode; for example, a Level 2
interrupt code is >FD, which is the same as the TRAP 2 opcode. Interrupt vector generation is
illustrated in Figure 2-6.

PROGRAM MEMORY TRAP VECTORS
> FFFA ENTRY POINT MS BYTE
> FD (INT2 INTERRUPT CODE) |— > FFFB ENTRY POINT LSBYTE

FIGURE 2-6 — INTERRUPT GENERATION: SYSTEM EMULATOR MODE
As with all interrupts, the processor pushes the contents of the Status Register and the

Program Counter onto the stack before branching to the address specified by the interrupt
vector.

215

24

2-16

1/0 CONTROL REGISTERS

The I/0 control registers are located in the Peripheral File and are responsible for memory mode
definition and interrupt control. All TMS7000 family members contain the 1/0 Control O
(IOCNTO) register; however, the I/0 Control 1 (IOCNT1) register is available only in the 70X 1
members. The I/O control registers are mapped into locations PO (IOCNTO) and P16 (IOCNT1)
of the Peripheral File as shown in Figures 2-7 and 2-8. The memory expansion modes and
individual interrupt masks and resets are controlled through these registers. The interrupt
sources may also be individually tested by reading the interrupt flags. The interrupt flag values
are independent of the interrupt enable values. Section 2.3 describes how bits 7 and 6 of the
IOCNTO, together with the Mode Control (MC) pin, determine in which memory expansion
mode the TMS7000 is functioning. See Table 2-2.

The INTn FLAG values are independent of the INTn ENABLE values. Writing a ‘1’ to the INTn
CLEAR bit will clear the corresponding INTn FLAG, but writing a ‘O’ to the INTn CLEAR bit has
no effect on the bit. If INTn is to be recognized by the CPU, three conditions must be met:

1) A one must be written to the INTn ENABLE bit in the IOCNTO or IOCNT1 Register.

2) The global INTERRUPT ENABLE bit, i.e., bit 4 or | in the Status Register (see Section
2.1.4), must be set to one by the EINT instruction.

3) INTn must be the highest priority interrupt asserted within an instruction boundary
(see Section 2.5).

All of the TMS7000’s interrupts may be tested in software, independent of whether the
interrupt is enabled or disabled. For example, the following program fragment waits for the
rising edge of the interrupt input on the INT1 pin by testing INT1 FLG:

WAIT BTJOP % >02,PO,WAIT Wait for INT1.

This allows the interrupt pins to be polled as ‘latching’ inputs when the interrupt action is not
desired. Refer to Section 2.5 for a detailed description of the TMS7000’s interrupt logic and
operation.

0 = INT3 Inactive
1 = INT3 Active

PF number = PO
Address = > 0100

PO

PO

INT2 Inactive
INT2 Active

0 =INT1 Inactive

[_4_1 =INT1 Active

READ

' WRITE

LO =INT1 Disable

1 =INT1 Enabled

7 6 5 4 3 2 1 0
MEMORY [MEMORY | INT3 INT3 INT2 INT2 INT1 INT1
MODE 1 | MODE O FLAG ENABLE FLAG ENABLE FLAG ENABLE
MEMORY [MEMORY | INT3 INT3 INT2 INT2 INT1 INT1
MODE 1 | MODEO | CLEAR | ENABLE | CLEAR | ENABLE | CLEAR |ENABLE

00 = Single Chip 40 = No effect
01 = Peripheral 1 = Clear INT1 flag
Expansion
10 =Full lg-0 = INT2 Disabled
i szaf;_s'og 1 = INT2 Enabled
= Jndefine 40 = No effect
1 = Clear INT2 flag
l€-0 = INT3 Disabled
1 = INT3 Enabled

‘¢ 0 = No effect

1 = Clear INT3 flag

FIGURE 2-7 — IOCNTO - /0 CONTROL REGISTER 0

2-18

(Register NOT cleared

O = INT5 Inactive

0 =INT4 Inactive

by RESET) {1 = INT5 Active 1 =INT4 Active
7 6 5 4 3 2 1 o]
0 o 0 0 INT5 INTS INT4 INT4 |READ
FLAG ENB FLAG ENB
P16
o o 0 0 INTS INTS INT4 INT4 |WRITE
CLEAR ENB CLEAR ENB
PF number : P16 L-O =INT4 Disabled
Address: >0110 1 =INT4 Enabled
0 = No effect

1 = Clear INT4 flag

O = INT5 Disabled
1 = INT5 Enabled

'€¢-0 = No effect
1 = Clear INT5 flag

FIGURE 2-8 — IOCNT1 - 1/O CONTROL REGISTER 1

Due to the read/modify/write nature of the bit manipulation instructions (ANDP, ORP, and
XORP), it is possible that a pulsed interrupt could occur during the operation of these
instructions on the IOCNTO and IOCNT1 and be missed. These instructions could also cause
the other interrupt flags to be unintentionally cleared or set. For example, there is no problem if
an XORP instruction is used to enable INT1 and not alter the condition of the INT1 flag (XORP
% >03,P0), as long as the flag flip-flop does not change state during instruction execution.
However, if a short INT1 pulse occurs during execution, a O may be read and a 1 would be
written to reclear the INT1 flag. In this case, the INT1 pulse would be undetected by the
processor. This same instruction would also affect the INT2 and INT3 flags as they are also
located in IOCNTO. To avoid these occurrences, use the MOVP and and STA instructions when

writing data to IOCNTO and IOCNT1.

2.5

2.5.1

The following code segment is an example of how the user can regulate the memory mode bits
and individual interrupt masks and resets through program control:

IOCNTO EQU PO

MOVP % >3B,I0CNTO SINGLE-CHIP MODE, CLEAR ALL INT FLAGS
* ENABLE INT1T AND INT3

BTJOP % >08,JO0CNTO,LABEL TEST IFINT2 SET, IF SET THEN JUMP

ANDP % >E5,IOCNTO CLEAR AND DISABLE INT3
LABEL EQU $

NOTE

This example is one of the few situations where use of the ANDP instruction on the
IOCNTO register is possible.

On RESET, the IOCNTO register is written with all Os. This disables INT1, INT2, and INT3
individually and configures the TMS7000 in Single-Chip mode. In the 70X1 devices, the
IOCNT 1 register is not written to during RESET. In order to ensure that INT4 and INT5 are also
individually disabled, it is recommended that all ‘O’s be written to the IOCNT1 register
immediately after RESET. Note that following RESET, all interrupts are globally disabled
because the Interrupt (1) bit in the status register is reset to O.

Because the state of the interrupt flag flip-flops (INTn FLG) are undetermined after RESET, it is
recommended that the flags be cleared by writing a 1 to bit positions 1, 3, and 5 in PO
(IOCNTO) and positions 1 and 3in P16 (IOCNT1).

INTERRUPTS AND RESET CLOCK OPTIONS

The internal machine cycle frequency, called Phi (¢), is derived from either a crystal or an
external clock source. There are two options available for converting the external frequency to
¢ and they are called the divide by two (/2) or the divide by four (/4) clock options. These are
mask options which means the option is placed on a manufacturing template, a mask, which
copies the actual circuit onto the silicon device. This means the clock option is finalized at the
start of manufacture and is NOT changeable by software or hardware. If the /2 clock option is
chosen, the external frequency divided by 2 is the internal machine cycle. A 5 MHz crystal
would give and internal cycle of 2.5 MHz with the divide by 2 option. If the /4 clock option is
used, the external clock is divided by 4 so that the same 5 MHz crystal would result in a ¢ of
1.25 MHz. In order to get a 2.5 MHz internal cycle a 10 MHz crystal would be used.

The /2 option is recommended for use with crystals and the /4 option can use either crystals or
another external source. It is not recommended to use an external source to drive a /2 device. If
a crystal is used it is connected between pins XTAL1 and XTAL2. To improve the crystal
waveform, 15 pF capacitors are connected between XTAL1 and ground and between XTAL2
and ground. If an external clock source is used itis connected to CLKIN, also called XTAL2, and
XTALA1 is left floating.

Interrupt Priority

The TMS70XO0 has priority servicing of three interrupt levels and reset, the TMS70X1 has five
interrupt levels plus reset. These levels are defined as follows:

1) Level Ois the highest priority and is reserved for the RESET function.
2) Level 1 is the second highest priority and is a user-defined external interrupt (INT1).

3) Level 2 is the third highest priority and is reserved for the on-chip hardware Timer i
(INT2).

219

2.5.2

2-20

4) Level 3is the fourth highest priority and is a user-defined external interrupt (INT3).

5) Level 4 is the fifth highest priority and is available only on the 70X1 devices. This
interrupt is used when the serial port is ready for data transfer, or it can be used by
Timer 3 (INT4).

6) Level 5is the lowest priority and is available only on the 70X 1 devices. This interruptis
reserved for the on-chip hardware Timer 2 (INT5).

All external interrupts and RESET have Schmitt trigger inputs. The external interrupt interface
consists of three discrete active low input lines which require no external synchronization:
RESET, INT1, and INT3. The INT1 and INT3 inputs are both latch and level triggered on all
TMS7000 devices, with some exceptions on CMOS parts. The INT1 input is only latch
triggered on the TMS70C00, TMS70C20 and TMS70C40. Interrupt Level 2 (INT2) is asserted
upon rollover of the programmable timer (see Section 2.6).

Each interrupt (INTn) is associated with an INTn ENABLE and FLAG bit in the IOCNTO and
IOCNT1 Registers (see Section 2.4). The INTn ENABLE bit must be set before INTh can be
recognized by the interrupt logic. In addition, there is a global INTERRUPT ENABLE bit (1) in the
Status Register which must be set by the EINT instruction in order for an interrupt to be
recognized by the CPU.

The TMS7000’s reset function, CPU/interrupt interface, and interrupt logic are described in the
sections that follow.

Device Initialization

Interrupt Level O (RESET) cannot be masked and will be recognized immediately, even in the
middle of an instruction. To execute the Level O interrupt, the RESET pin must be held low for a
minimum of 1.25 internal clock cycles (¢) to guarantee recognition by the device. During
assertion of the RESET pin, the Data Direction Registers CDDR and DDDR registers (and ADDR
on 70X 1 devices) are cleared to all ‘O’s and the OUTPUT DATA flip-flops of Ports B, C, and D
(and Port A on 70X 1 devices) are set to all ones (see /0 logic, Figure 2-4). This causes Ports C
and D (and Port A on 70X 1 devices) to be placed in the high impedance input mode and Port B
to output all ones (>FF) regardless of the state of the internal machine clock. When RESET is
removed, the following operations are performed prior to the first instruction aquisition.

1) All zeros are written to the IOCNTO Register and the Status Register. This disables
INT1, INT2, and INT3 and leaves the INTn FLAG bits unchanged. Note that the
IOCNT 1 Register in 70X 1 devices is not written to.

2) The MSB and LSB values of the Program Counter just before RESET are stored in RO
and R1 (A and B registers) respectively.

3) The Stack Pointer is initialized to >01.

4) The MSB and LSB of the reset vector are fetched from locations >FFFE and >FFFF
respectively (see Table 2-10) and loaded into the Program Counter.

5) Program execution begins from the address placed in the Program Counter.
As stated above, the reset function does not change the INTn FLAG bits in the IOCNTO register

(since all zeros are written) and does not write at all to the IOCNT 1 register. Also, the OUTPUT
DATA flip-flops of the A, C, and D Ports are set to all ‘1’s. If any of the bits in a DDR register is

2.5.3

set to a ‘1’ ; the corresponding port pin would become an output, producing a ‘1’ level. It is
generally good practice to initialize the OUTPUT DATA flip-flop with the desired output value
(by writing to the port data value register) before writing to the DDR flip-flop to make the
corresponding pin an output. The following sequence of code is an example of what a typical
initialization routine could be after a RESET.

RESET MOVP % >2E,PO Clear INT1, INT2, and INT3 FLAGS and

place device in Single-Chip mode.
Enable INT2.

MOVP % >0A,P16 Clear INT4, INT5 FLAGS (70X 1 only).
Disable INT4 and INT5

MOVP %VALU1,P8 Load Port C data value register
(CPORT).

MOVP %MASK1,P9 Load Port C data direction register
(CDDR).

MOVP %VALU2,P10 Load Port D data value register
(DPORT).

MOVP %MASK2,P11 Load Port D data direction register
(DDDR).

MOVP %VALU3,P2 Load Timer 1 Latch (TL).

MOVP %VALU4,P3 Load timer source, internal prescaler
latch and start timer.

EINT Set global interrupt enable bit to

allow interrupts.

The Stack Pointer can also be reinitialized in the Register File following reset by executing a
program similar to the one below.

STACK MOV %VALUE,B Load B with the stack starting point
LDSP Put this value into the stack pointer

CPU Interface To Interrupt Logic

Once an interrupt has been asserted (the INTn pin goes low), it becomes active if its ENABLE
bits are set to one, and the global Status Register INTERRUPT ENABLE bit (l) is set to one. An
active interrupt is one which is capable of being recognized by the CPU but has not yet been
acknowledged.

As shown in Figure 2-9, the TMS7000’s on-chip logic recognizes an active interrupt and sends
an INT ACTIVE signal to the CPU. When the currently executing instruction is completed, the
CPU selects the highest priority active interrupt and routes INTA back to the INTn ACK
(interrupt acknowledge) line of the recognized interrupt. In the case of more than one interrupt
active within the same instruction boundary, i.e., simultaneous interrupts, then the interrupts
will be acknowledged by the CPU according to the priority levels described at the beginning of
Section 2.5. For example, if both INT2 and INT3 occur within the same instruction boundary,
INT2 will always be serviced first. Refer to Section 2.6.8 for an application of this example.

2-21

254

2-22

T NteRmupT Logic | [T

+—e— . —
INT1 NT1 ACK I INTA l
>—»—4INT1 ACTIVE <

+—<+—|inT2 ACK. | |
INT2 PRIORITY -
LOGIC INT ACTIVE
|

>—»—{INT2 ACTIVE

4—<4—]INT3 ACK. I

>—p—1INT3 ACTIVE I
| L]

INTERRUPT DATA

™)
CODES - —

FIGURE 2-9 — CPU INTERFACE TO INTERRUPT LOGIC

INT3

Once INTn has been acknowledged by the CPU, the INTn ACK line, as shown in Figure 2-10,
clears the corresponding INTn FLAG flip-flop. The CPU then pushes the contents of the Status
Register and the Program Counter (MSB and LSB) onto the stack, and zeros the Status
Register, including the global INTERRUPT ENABLE (1) bit. The CPU reads an interrupt code from
the interrupt logic and branches to the address contained in the corresponding interrupt vector
location in memory. The addresses of the trap vector locations for each interrupt level are
shown in Table 2-7. There are 19 internal clock cycles (¢) required between the end of an
instruction in the interrupted program and the start of the first instruction of the interrupt
routine. Interrupting out of the IDLE state requires 17 machine cycles.

TABLE 2-7 — RESET AND INTERRUPT VECTOR LOCATIONS IN ROM

VECTOR VECTOR SERVICE
MSB LSB DESCRIPTION ORDER
>FFFE >FFFF RESET Immediate
>FFFC >FFFD INT1 External 1
>FFFA >FFFB INT2 Timer1 2
>FFF8 >FFF9 INT3 External 3
70X1 only below
>FFF6 >FFF7 INT4 Serial port 4
>FFF4 >FFF5 INTS5 Timer 2 5

The interrupt service routine can explicitly enable nested interrupts by executing the EINT
instruction to directly set the | bit in the status register to a one, thus permitting nested
interrupts to be recognized. When the nested interrupt service routine completes, it returns to
the previous interrupt service routine by executing the RET! intruction.

Interrupt Logic

The internal interrupt logic for each the three maskable interrupts for the 70X0 devices and five
maskable interrupts for the 70X 1 devices is shown in Figure 2-10.

The logic is slightly different for INT1 on the 70CXO0 devices so that this interrupt logic will only
detect the Q1 output of the Pulse flip-flop and not INTn. On the CMOS parts, INT1 is a latched
interrupt and not a latched and level as on the other interrupts.

To even further conserve the already low power requirements of the CMOS devices, two low
power modes are provided. These modes are called Halt and Wake-up and are entered by
executing a IDLE instruction. Either an external interrup or the timer interrupt will release the
device from the low power modes depending on whether it is in the Hait or Wake-up mode. See
Section 4 for a complete description of the modes and interrupts.

INTn INTn
CLEAR FLAG ENABLE
IOCNTO
REGISTER
WR RD WR R
—— — — — — e— — w— — — w— —dr— —— — — —
T e
I l‘ ACK
INTERRUPT
PIN |
OR T0
Tver | i D D ¢ I PRIORITY
l | LOGIC
ENABLE
| LATCH [
—{ \ & INTn
INTn D Q —_J ACTIVE
. —
SYNC STATUS
FF REGISTER
*Removed from INT1 logic on TMS70CX X versions INT ENABLE

NOTE: ¢ is a clock with frequency of fosc/2 (+ 2 option),

fosc/4 (+ 4 option).
FIGURE 2-10 — INTERRUPT LOGIC

When an external interrupt is first asserted, its level is gated into the Sync flip-flop by the Phi
() clock signal, which has a frequency of fogc/2 for the /2 clock option and fogc/4 for the /4
clock option. In order for a pulse interrupt signal to be detected, the pulse width must be a
minimum of 1.25 Phi (¢) frequency periods. The output of the Sync flip-flop clocks a 1 into the
Pulse flip-flop. This is the only time a 1 is loaded into the Pulse flip-flop. The Pulse flip-flop will
be set within 1.25 machine cycles (¢) of the assertion of the interrupt. If INTn is removed

before the interrupt is recognized, its occurrence is latched in by the INTn Pulse flip-flop (Q1).
The INTn ENABLE bit is used separately to individually mask interrupt levels. This bit must be 1

for the interrupt to be recognized.

As previously stated, all interrupt control bits are implemented in the IOCNTO and IOCNT1

registers in the Peripherial File. I/O instructions may simply read from and write to each INTn
ENABLE bit (Q2).

2-23

2.6

2-24

The INTn FLAG is handled differently. When the INTn FLAG bit is read, the logical OR of the
Pulse flip-flop output (Q1) and I NTn (inverted | NT n pin) is returned. As long as the INTn pin
is low, the INTn FLAG bit will be read as a 1, regardless of the state of the pulse flip-flop. This
makes the external interrupts both latch and level sensitive. This is different on INT1 of the
70CXO0 devices however. When the INT1 FLAG is read, the pulse flip-flop output (Q1) is the
only return. This makes INT1 of the TMS70CXO a latched interrupt only and not a level
interrupt. When a 1 is written to the INTn CLEAR bit (See Section 2.5.3), the pulse flip-flop is
cleared. Writing a O to INTn CLEAR has no effect.

The pulse flip-flop allows short pulsed external interrupt signals to be recognized by the CPU. A
pulsed interrupt signal must have a minimum pulse width of 1.25 Phi (¢) frequency periods in
order to be gated into the pulse flip-flop. The pulse flip-flop will retain the signal until the
interrupt is recognized. When the interrupt is acknowledged by the CPU, the pulse flip-flop is
cleared automatically. To make sure the pulsed interrupt is not interpreted as a level signal, the
maximum pulse (time low) of a pulsed interrupt cannot exceed the following:

(16+N)/ ¢

where N equals the number of machine cycles in the interrupt service routine, up to and
including the EINT or RETI instruction and ¢ is the internal machine clock frequency.

This ensures that the INTn FLAG is cleared prior to the first possible instruction boundary in
which the interrupt could be reserviced. Note that this is not of any concern to INT1 on the
TMS70CXO0 devices since INT1 is not level sensitive.

The interrupt structure of the TMS7000 also permits wire-ANDing of multiple interrupt sources
onto a single INTn pin, by allowing level-sensitive interrupt detection in addition to
pulse-sensitive detection. A high-to-low transition on the INTn pin sets the pulse flip-flop, as
previously described, and this, as well as the low level of the INTn pin, sets the INTn FLAG in
the active state. When the interrupt is accepted, the pulse flip-flop is cleared and will not be set
again until after the next high-to-low transition of the INTn pin. If the INTn pin remains at a low
level, the corresponding INTn FLAG will remain active, and the interrupt will be recognized
again.

This structure allows multiple interrupts to be wire-ANDed onto one interrupt, since the
interrupt will be repeatedly recognized as long as the interrupt pin is low. An application
program could determine which of several interrupts are requesting service and set its own
priority structure.

Interrupt inputs can be tested, using the interrupt FLAG bits (See Section 2.4) without actually
recognizing the interrupt, thus permitting flexible multi-device control. Under program control,
each interrupt routine can retain complete control of the processor or allow nested interrupts,
as described in Section 2.4,

PROGRAMMABLE TIMER/EVENT COUNTERS

The programmable timer/event counters are 8-bit counters with a programmable prescaled
clock source as shown in Figure 2-11. The TMS70XO0 devices contain one timer/event counter
and the TMS70X1 devices contain two timer/event counters. Timer 1, with its 8-bit capture
latch, is available in all TMS7000 family members and is accessed at P2 and P3 of the
peripheral file. Timer 2 is available only in the TMS70X1 family members and is accessed at
P18 and P19 of the peripheral file (see Figure 2-12).

TIMER 1

5-BIT PRESCALE 8-8IT TIMER
LATCH PL) LATCH (TL)
/8 . 4
EXTERNAL (A7) CLK 8-BIT TIMER
SIGNAL 5-8IT (CURRENT
PRESCALER £
INT3
MODE
INT2 TIMER 8-BIT
VALUE |CAPTURE LATCH
CAPTURE
VALUE
TIMER 2

A(S)SCLKD_‘ 5-BIT PRESCALE 8-BIT TIMER

CASCADE H LATCH (TL)
SOURGE I.A'rcl (PL)

$/8 toLK 5-BIT B-SITR;IMER

CASCADE | (CURRENT

SOURCE PRESCALER VALUE)
TIMER 1
INTS TIMER

INTERRUPT
CASCADE VALUE

FIGURE 2-11 — PROGRAMMARBLE TIMER/EVENT COUNTER
TIMER 1 DATA REGISTER - TIDATA

7 ‘ 6 l 5 I 4 | 3 I 2 l 1 | 0
PF number: P2 MSB CURRENT TIMER VALUE LSB READ
Address: >0102
MSB TIMER LATCH VALUE (TL) LSB WRITE
TIMER 1 CONTROL REGISTER - T1ICTRL
7 6 5 ‘ 4 { 3 \ 2 l 1 t (¢]
PF number: P3 MSB CAPTURE LATCH VALUE (CL) LSB READ
Address: >0103
START |[SOURCE (0] PRESCALE LATCH VALUE WRITE
(PL)

LO for all NMOS devices
0 = Wake-up low power mode, 70CXO0 only

1 = Halt low power mode, 70CXO0 only

1 = External clock source from pin A7
0 = Internal clock source = ¢/8

L»1 = Start timer

O = Stop timer

FIGURE 2-12 — TIMERS 1 AND 2 DATA AND CONTROL REGISTERS

2-25

TIMER 2 DATA REGISTER - T2DATA

7 6 5 ' 4 3 2 1 0]
| ° | I B B
PF number: P18 MSB CURRENT TIMER VALUE LSB | READ
Address: >0112
MSB TIMER LATCH VALUE (TL) LSB | WRITE

TIMER 2 CONTROL REGISTER - T2CTRL

7 | 6 l 5 l 4 I 3 I 2 ' 1 l 0
PF number: P19 0 0 0 0 0 0 0 0 | rReaD
Address: >0113
START |SOURCEICASCADE ~ msb PRESCALE LATCH VALUE Isb WRITE
(PL)

LJ = Timer 1 output (INT2) is clock source
overides SOURCE bit
0 = SOURCE bit determines clock source

4—1 = External clock source from pin A6
0 = Internal clock source = ¢/8

4 1 = Start timer
O = Stop timer

FIGURE 2-12 — TIMERS 1 AND 2 DATA AND CONTROL REGISTERS (CONTINUED)
The clock source and prescaling value of both timers are determined by the timer control

registers (T1CTRL/T2CTRL). These control bits are write-only and therefore restrict timer
control register manipulations to the following instructions:

MOVP % >XX,Pn STA @>01XX

MOVP A.Pn STA *Rn

MOVP B,Pn STA @ >01XX(B)
Where:

>XX = Immediate 8-bit data value in hex
>01XX = 16-Bit peripheral file address in hex
A = Aregister

B = Bregister

Rn = General purpose register pair number

Pn = Peripheral file register number

The same instructions are required for writing to the timer data registers.

2-26

2.6.1

2.6.2

2.6.3

The clock source of Timer 1 and Timer 2 is determined by bit 6 (SOURCE) of T1CTRL and
T2CTRL respectively. A SOURCE bit of O selects the internally generated ¢/8 (fosc/32, /4
option or fogc/16, /2 option) clock and places the Timer/Event Counter in the Real Time Clock
(RTC) mode. A SOURCE bit of 1 selects the external clock source and places the Timer/Event
Counter in the Event Counter mode. In the external mode, the clock sources for Timers 1 and 2
are input on the two Most Significant Bits of I/O port A (A7) and (AB) respectively.

Bit 7 of the timer control registers is the START bit for the respective programmable timers.
When a O is written to the START bit, the timer chain is disabled or frozen at the current count
value. When a 1 is written to the START bit, regardless of whether it was a O or a 1 before, the
prescaler and counter decrementers are loaded with the corresponding latch values, and the
Timer/Event Counter operation begins. When the prescaler and counter decrement through
zero together, an interrupt flag is set and the prescaler and counter decrementers are
immediately and automatically reloaded with the corresponding latch values. The interrupt
levels generated by the timers are INT2 for Timer 1 and INT5 for Timer 2. Timer 1 has a Capture
Latch (CL) associated with it which “captures” the current value of the counter whenever
INT3 is triggered.

Real Time Clock (RTC)

in the RTC mode, the internaily generated ¢/8 {fosc/32, /4 option or fogc/ 16, /2 option) is the
decrementer clock source. Each positive pulse transition of the ¢/8 period signal decrements
the count chain.

The RTC mode allows a program to periodically call a service routine, such as a display refresh,
by simply setting the prescale latch value and the timer latch value so the routine is called at the
desired frequency.

Event Counter (EC)

When Timer 1 or Timer 2 is in the EC mode, the counter functions as in the RTC mode except
pin A7 and A6 of Port A are the decrementer clock sources for Timer 1 and Timer 2
respectively. A positive edge transition on these external pins decrements the count chain.
Note that this will allow INT2 and INT5 to function as a positive edge-triggered external
interrupt by loading a start value of ‘O’ into both the prescaler and timer latches. A positive
transition on A7 or A6 will decrement the corresponding timer through zero and generate an
INT2 or INT5. The EC mode can also be used as an externally provided RTC if the external clock
is input to I/O pin A7. The maximum clock frequency on A7 or A6 in the EC mode must not be
greater than ¢/8; or fosc/32, assuming the /4 clock option and fogc/16, assuming the /2 clock
option. The minimum pulse width must not be less than 1.25 machine cycles (1.25 x ¢) as
shown in Section 4.

Timer and Prescaled Clock

The timer clock, whether internal or external, is prescaled by a 5-bit modulo-N counter. The
prescaling value is determined by the least significant five bits of the timer control register. The
actual prescaling value is equal to the timer control latch value plus one. Thus, a value of >88, (
>80+ >8 where >80 is the start bit and >8 is the prescale value) in the timer control latch
would result in a fogc/ 160 clock output from the prescaler, assuming a /4 clock option.

An INT2 interrupt for Timer 1 or an INT5 interrupt for Timer 2 is momentarily pulsed when both

the prescaler and counter decrement past the zero value together. This sets the INT2 or INT5
flag flip-flop, as described in Section 2.5.4. The prescaler and counter are then immediately

2-27

2.6.4

2.6.5

2-28

reloaded with the contents of the prescale latch (PL) and the timer latch (TL) and the timer will
start decrementing with the new PL and TL value. The TL is loaded through the Timer 1 data
register (T1DATA) for Timer 1 and the Timer 2 data register (T2DATA) is loaded into Timer 2.
This value is write-only. When read, the timer data register contains the current value of the
counter. The PL is loaded through the Timer 1 control register (T1CTRL) for Timer 1 and the
Timer 2 control register (T2CTRL) loads into Timer 2. When read, the T1CTRL contains the
Capture latch (CL) value and the T2CTRL contains all zeros.

Timer Interrupt Puises

The period of the timer INT2 and INT5 interrupt pulses may be calculated by the following
formula:

tnT =tk *(PL+1)*(TL+1)
where:

UNT = period of timer interrupts

toLk = 8/¢ (32/fpgc on /4 option) for internal RTC
mode or the period of input external
EC mode

PL = Prescaler Latch value

TL = Timer Latch value

At the falling edge of the INT3 input, the Timer 1 value is loaded into the Capture Latch (CL).
When read, the Timer 1 control register contains the CL value. This feature provides the
capability to determine when an external event occurred relative to the internal timer.

NOTE
During the HALT mode of the CMOS version, the capture latch may not be loaded by
INT3.
Timer 2

Timer 2 is only available on the TMS70X1 family devices (i.e. TMS7001, TMS7041 ,
SE70P161). Timer 2 s similar to Timer 1 except that there is no Capture Latch associated with
Timer 2, and INTS is generated by Timer 2. In addition, T2CTRL also contains the CASCADE bit
(bit 5). This bit is used in conjunction with T2CTRL SOURCE (bit 6) to determine the
decrementing source of Timer 2.

A CASCADE bit of 1 selects the interrupt generated by Timer 1 (INT2) as the decrementing
input to the prescaler of Timer 2. The CASCADE bit overrides the SOURCE bit, i.e., if the
CASCADE bit is set to 1 the SOURCE bit of Timer 2 has no effect.

As with Timer 1, a SOURCE bit of O selects the internally generated /8 (fosc/32, /4 option or
fosc/16, /2 option), and places the the timer in the Real Time Clock (RTC) mode. A SOURCE bit

of 1 selects the external clock source and places the Timer/Event Counter in the Event Counter
(EC) mode.

2.6.6

2.6.7

The external EC input for Timer 2 is general purpose 1/0 pin A6/SCLK of Port A. A6/SCLK is
also the 1/0 line (depending on mode of operation) for the baud rate generator clock (SCLK).
Section 2.7.2 describes the SCLK signal.

Driving the external EC line for Timer 2 with the A6/SCLK produces the following modes:

1) With both SCLK and T2 external, the input signal drives the baud rate timer (T3) and
Timer 2 (T2).

2) With SCLK external and T2 internal, the I/O bit (A6/SCLK) drives the baud rate timer
{(T3) and ¢/8 drives Timer 2's prescaler.

3) With SCLK and T2 internal, the A6/SCLK pin is the 1x baud rate output signal from T3
and the T2 source is ¢/8.

4) With SCLK internal and T2 external, A6/SCLK is the 1x baud rate signal from T3 and
drives T2. In this mode, the baud rate timer and Timer 2 are cascaded, with the baud
rate timer driving Timer 2. This is done by setting the CASCADE bit to O and the Timer
2 SOURCE bit to 1. Timer 2 can then be cascaded with either Timer 1 or the baud rate
timer.

Pulse Width Measurement

Through the use of the Capture Latch (CL) the Timer/Event Counter can work with pulse width
measurement applications. A simple exclusive OR- gate is all that is needed to set up the
TMS7000 to handle a pulse width modulated input as shown in Figure 2-13. In software, the
user outputs the inverted input pulse train through one of the output lines (BO in this case). This
line is exclusive-ORed with the input data line resulting in an input to the INT3 pin. This causes
the Capture Latch to be loaded with the current value of the timer at each transition of the input
pulse train. The user program can then compare these values to determine width values.

TMS7000

INPUT DATA
D
BO

FIGURE 2-13 — PULSE WIDTH MEASUREMENT

Pulse Width Modulation (PWM) Theory of Operation

Pulse Width Modulation (PWM) involves the encoding of information in the width of a pulse.
Information can be contained in the widths of the these pulses when these pulses occur at a
base frequency as shown in Figure 2-14.

'Q———t————.'-———t——."——t——.'
ey I gy IS ey I
l‘-W1 l‘—’l

(B

W2 l'— Wa—ﬁl

FIGURE 2-14 — PULSE WIDTH MODULATED PULSE TRAIN

f=1/t

2-29

2-30

Since the interrupts are only latched on a low level, a technique to give a low level at the
beginning and end of a pulse is shown in Figure 2-15 which allows a simple timing program to
measure the pulse width. This technique can be extended from PWM to any interval
measurement application:

The TMS7000 is equipped to perform pulse measurement with the addition of a single
exclusive OR-gate.

The edges of the PWM measurement are driven off of INT3 while the onboard counter times
the event. The TMS7000 interrupt is structured so that the current value of the timer is
captured at the CL (P3) on receipt of INT3. The actual time between events can then be derived
from this captured value. The additional output BO is used to disable INT3 between successive
edges of input train (Figure 2-15).

LT 1 [|

fo—wi—of bo—af-w> f—w3;—sj
o | L I
SERVICE A) B) A B A B
ROUTINE START STORE
ACTION TIMER CAPTURE
LATCH

FIGURE 2-15 — TM57000 PWM INT3 TIMING

The decoded data, now encoded in the interval between INT3s, is available on alternate
interrupts at the Capture Latch (P3). A sample INT3 service routine is:

INT3 XORP % >01,P6 TOGGLE BO
DEC R2 MARK YOUR PLACE
BTJO % >01,R2,RSTRT JUMP OFF OF MARKER
MOvVP P3,8 SAVE CAPTURE LATCH DATA
RETI

RSTRT MOvVP % >80,PO RESTART TIMER
RETI!

In this sample, R2 is used to keep the interval measurement on the proper portion of the pulse,
and to flag the interrupt to the mainline program. Pin BO saves the Capture Latch data for the
mainline program to interpret.

2.6.8

For long pulse widths, the prescale value can be adjusted to prevent the timer from rolling over
before receiving an INT3. An alternate solution is to maintain a zero value of prescale, but use
INT2 (the timer interrupt) to drive a software counter. A sample code is:

INT2—» ORP % >08,PO CLEARINT2 FLAG
INC R-.'l. N INCREMENT UPPER STAGE
RETI COUNTER
NOTE:

This sample code involves using the TMS7000 in a multi-interrupt environment.
Care must be taken to ensure that a correct sequence of interrupts is performed.
Multi-interrupt Pulse Width Modulation is described in the following paragraphs.

Multi-Interrupt Pulse Width Modulation (PWM)

A simultaneous interrupt occurs when the INT3 service routine is delayed due to the receipt of
a higher priority INT2 at the same time.

For example, when the user is operating the INT2 timer at high resolution (low value of
prescale) to time intervals between successive INT3 events, the INT2 service routine
increments a software controlled RAM byte. This byte serves as an upperstage byte for the
timer, so the high resolution offered by a low value of prescale can be maintained.

However, when both interrupts occur within an instruction cycle, one of the two sequences
shown in Figures 2-16 and 2-17 has occurred.

|- INSTRUCTION TIME |
1AQ 1AQ
| l
INT2 INT3
TIMER CAPTURE IAQ = INSTRUCTION
ROLLS LATCH ACQUISITION
OVER LOADED

FIGURE 2-16 — SIMULTANEOUS INTERRUPTS, INT2 PRECEDING

In the first sequence, if INT2 precedes INT3 within an instruction boundary, the receipt of INT2
implies that the timer has rolled over and its latch value (>FF) is reloaded into the current timer
register. The current timer value was captured upon receipt of the interrupt (3). The INT2
service routine increments the software (RAM) counter and exits. The INT3 is then
immediately serviced as the current timer value was captured upon receipt of the interrupt (3).
The service routine reads the capture latch value, and a correct interval may be deduced from
this capture value and the software upperstage counter value.

2-31

2-32

& INSTRUCTION TIME P
IAQ IAQ
| |
INT3 INT2
CAPTURE TIMER IAQ = INSTRUCTION
LATCH ROLLS ACQUISITION
LOADED OVER

FIGURE 2-17 — SIMULTANEOUS INTERRUPTS, INT3 PRECEDING

The second sequence that can occur is when INT3 precedes INT2 within an instruction
boundary. As in the previous case, INT2 is serviced first. However, the current timer value is
captured by hardware when INT3 comes in, before actual servicing of INT3. INT2 has not yet
occured and the hardware has therefore captured a timer value that has not rolled over. This
timer value is likely to be near or at >00. The INT2 service routine, if it does not check for this
condition (by testing the most significant bit (MSB) of the timer for rollover) will increment the
upper stage of software by default and will cause an incorrect value to be assumed for the
interval. This condition occurs because the timer (implemented in hardware) and the program’s
upperstage counter (software driven) are out of sync.

The following code will correct the situation.

INT3 BTJZP
BTJO
JMP

OKAY INC

RET3 RETI

INT3 then becomes:

INT3 XORP
DEC

RSTRT MovP

% >20,P0O,0KAY
% >80,P3,0KAY
RET3

% >01,P6
R2

% >01,R2,RSTRT
P3.B

% >80,P3
R4

CHECK FOR PENDING INT3
CHECK CAPTURED VALUE

OKAY TO INCREMENT UPPER STAGE

TOGGLE BO
MARK YOUR PLACE

JUMP OFF OF MARKER
SAVE CAPTURE LATCH DATA

RESTART TIMER
RESET SOFTWARE UPPER STAGE

2.7 SERIAL PORT (TMS70X1 VERSIONS ONLY)
2.71 Description

The TMS70X1 contains a serial port which greatly enhances its I/O and communication
capability. It is not available in the TMS70XO0 vesions of the TMS7000 family. The serial port
can operate in several modes which let the TMS70X1 interface with Universal Asynchronous
Receiver/Transmitter (UART) peripheral devices, as well as multiple microcomputers
(TMS70X1, MC6801, I18051). These serial links are implemented using standard
asynchronous protocols. These multiprocessor protocols, described in Section 2.7.3, are
compatible with those used by the Motorola MC6801 and Intel I8051.

A second mode, isosynchronous, permits very high transmission rates. *

The third mode, a serial I/O mode, can be used to expand I/O lines using external shift registers,
and to communicate with peripheral devices requiring a non-UART serial input (e.g. display
drivers).

Including a hardware serial port on-chip saves ROM code and allows much higher transmission
rates than could be achieved in software. The full-duplex serial port has a double buffered
transmitter and receiver.

The serial port consists of a receiver (RX), transmitter (TX), and Timer 3 (T3). The complete
functional definition of the serial port is programmed by the TMS70X1 software. A set of
control words must first be sent out to the serial port to initialize it, so that it supports the
desired communications format. These control words will determine the baud rate, character
length, even/odd/off parity, number of stop bits, etc.

The serial port is controlled and accessed through registers in the peripheral file. The registers
associated with the serial port are:

TABLE 2-8 — SERIAL PORT CONTROL REGISTERS

REGISTER NAME TYPE FUNCTION
P17 SMODE WRITE Serial Port Mode
P17 SCTLO WRITE Serial Port Control-O
P17 SSTAT READ Serial Port Status
P20 T3DATA R/W Timer 3 Data
P21 SCTL1 R/W Serial Port Control-1
P22 RXBUF READ Receiver Buffer
P23 TXBUF WRITE Transmission Buffer

The SMODE register is the receive/transmit (RX/TX) write-only control register. The SCTLO
and SSTAT are the RX/TX write-only control register and read-only status register, respectively.
These registers are all accessed through P17. The first write after a hardware or serial port
reset accesses SMODE (See Section 2.7.5.1). All subsequent writes access SCTLO. These
registers are common to both RX and TX, and both RX and TX will have the same mode and
frame format.

» Isosynchronous is the term given to this second communication mode of the serial port. This mode has the same frame format as the

asynchronous mode, but uses only one serial clock (SCLK) cycle per data bit as opposed to 16 SCLKs per data bit for the asynchronous mode.
This allows transmission rates 16 times those of the asynchronous mode.

2-33

The T3DATA register accesses the Timer 3 8-bit timer. It is similar to T1DATA and T2DATA.
The SCTL1 register is a read/write control register for the RX/TX and Timer 3.

The RXBUF is a read-only register containing data from the RX. The RXBUF is double buffered
with the internal shift register (RXSHF) so that the the TMS70X1 CPU has at least a full frame
to read the received data before the RX may overwrite it with new data.

The TXBUF is a write-only register from which the TX takes the data it transmits. It is double
buffered with the TX shift register (TXSHF), so that the TMS70X1 CPU has a full frame to
write new data before TXBUF becomes empty.

Figure 2-18 is a block diagram of the serial port registers and functional blocks. Figure 2-19
illustrates serial port I/0 logic. Section 2.7.5 describes serial port registers in detail.

CPU

SERIAL PORT

SMODE/
SCNTLO/SSTAT

0

<::> T3DATA/ <::> < | A6/SCLK
SCNTL1 TIMER3
»INT4
l4———SCLK
<: RXBUF <,: RXSHF <rl_— RX |« A5/RXD
»INT4
C— — o, S
TXBUF TXSHF X »B3/TXD
—pINT4|

FIGURE 2-18 — SERIAL PORT FUNCTIONAL BLOCKS

2-34

2.7.2

2.7.2.1

TMS70X1

RXD - A5/RXD
16

AS eg—

A6

SCLK
EXTERNAL 4—{}
SCLK

INTERNAL ——
CLK BIT
0 = EXT
1 = INT
.])t 80
e
B3 37

FIGURE 2-19 — SERIAL PORT I/0 LOGIC

SCLK/AB

Y

-
o

The TXD and RXD lines use /0 lines B3 and Ab respectively. This configuration allows the TXD
and RXD pins to be used as /0 pins if desired. If serial port transmission is disabled, then TXD
follows B3. If reception is disabled, then no receiver interrupts occur and Ab is an input bit.

Clock Sources and Serial Port Modes

The serial port can be driven by an internal (Timer 3) or external baud rate generator. The source

of the serial clock (SCLK) is determined by the clock (CLK) bit, SCTL1(6) (See Section 2.7.5).
An external clock source is input on the high impedance A6/SCLK line. An internal clock source

is output on the low impedance A6/SCLK line, being derived from Timer 3 via a ¢/2 clock

(fosc/8 for /4 option, fosc/4 for /2 option) as shown in Figure 2-19. The internally generated

SCLK has a 50% duty cycle. The current value of SCLK (internal or external) can be determined

by reading A6/SCLK. The RX receives data on the rising SCLK edges and the TX transmits data

on the falling SCLK edges.

The RX/TX has three communication modes: asynchronous, isosynchronous, and serial /0.
The serial I/0 mode is used to link the serial port to shift registers for simple I/0 expansion. The
isosynchronous and asynchronous communication modes are used to link to other
synchronous and asynchronous devices. These two mode also have extra features for two
formats of multiprocessor communication. In all modes 1/0 is NRZ (non-return to zero) format,
i.e. data value 1 = high level, and data value O = low level.

Asynchronous Communication Mode
When the serial port is operating in the asynchronous communication mode, the frame format

consists of a start bit, five to eight data bits, even/odd/no parity, and one or two stop bits. The
bit period is 16 times the SCLK period.

2-35

RX operation is initiated by reception of a valid start bit, which consists of a negative edge (1
and then O in adjacent SCLK periods) followed by taking a majority vote of three samples where
2 of the samples must be zero. These samples occur seven, eight, and nine SCLK periods after
the negative edge. This sequence provides false start bit rejection and also locates the center of
bits in the frame, where the bits will be read on a majority basis. Figure 2-20 illustrates the
asynchronous communication format, with a start bit showing how edges are found and
majority vote taken.

FALLING
EDGE DETECTED MAJORITY VOTE TAKEN

l l‘ 2 3 a 5 6 l7 ls ls 10 1 12 13 14 15 16 1 2

| —

DATA BIT PERIOD = 16 SCLK PERIODS S

\ d

[]

FIGURE 2-20 — ASYNCHRONOUS COMMUNICATION FORMAT

Since the RX synchronizes itself to frames, the external transmitting and receiving devices do
not have to use the same SCLK; it may be generated locally. If the internal SCLK is used it will
be output continuously on pin A6.

2.7.2.2 Isosynchronous Communication Mode

In this mode, the frame format consists of a start bit, five to eight data bits, even/odd/no parity,
and one or two stop bits. The bit period equals the SCLK period. RX operation is initiated by
reception of a valid start bit, which consists of a negative edge. Bits are read on a single value
basis. Since the RX does not synchronize itself to data bits the transmitter and receiver must be
supplied with a common SCLK. If the internal SCLK is used it is output continuously on pin
AB/SCLK. Figure 2-21 illustrates the isosynchronous communication format, with a complete
frame consisting of a start bit, six data bits, even parity, and two stop bits.

FALLING EDGE
INDICATES
START BIT

SCLK

|

- -

]
]
|
[
D1 D2 03|D4|05|EP'S1 s2

<+
DATA BIT PERIOD = SCLK PERIOD

TXD
RXD

—

:.----.

DO

FIGURE 2-21 — ISOSYNCHRONOUS COMMUNICATION FORMAT

2-36

2.7.2.3

2.7.3

In both the asynchronous and isosynchronous communication modes, when a frame is fully
received, RXBUF is loaded from RXSHF, RXRDY and INT4 FLG are set to 1, and the error status
bits are set accordingly. RXRDY is reset to O when the CPU reads RXBUF.

Transmission is initiated after the CPU writes to TXBUF. This sets TXRDY to 0. Once TXSHF is
empty, it is loaded from TXBUF, setting TXRDY and INT4 FLG to 1. Upon completion of the
transmission, TXSHF will reload if TXBUF is full; if not the TX will idle and TXE will be 1 until
TXBUF is written to.

Serial /0 Communication Mode

When the serial /O mode is in operation, the frame format is five to eight data bits and one stop
bit, with no corresponding clock edge for the stop bit. The clock does not send pulses during
the stop bits. The bit period is equal to the SCLK period. TX operation is initiated by writing to
TXBUF, when TXRDY equals 1. RX operation is initiated by writing a 1 to the RXEN bit. Figure
2-22 illustrates the serial I/0 format for two back to back frames, each containing five data
bits.

SCLK ACTIVE AND DATA BEING TRANSMITTED OR RECEIVED

EREREERERE.

INTERNALLY

GENERATED Ill'llllll |||||I||||
SCLK

;;3 [Lpojor 2] o3 pa [so | oo o1 [z | o3 [os so

bt f P

SCLK & TXD INACTIVE AND HIGH
FIGURE 2-22 — SERIAL I/0 COMMUNICATION FORMAT

An internal SCLK source will be output on pin A6/SCLK. In the serial I/O mode, SCLK is gated
on pin A6/SCLK and will only be active when data is being transmitted or received; otherwise,
pin A6/SCLK will have a one value. An external SCLK may be selected and will drive the serial
port. However, this clock mode will be useless since there is no on-chip method to generate a
gated SCLK to drive the external shift registers.

Multiprocessor Communication

When the serial port is in either the asynchronous or isosynchronous communications mode,
the multiprocessor communication formats are available. These formats are used to transfer
information between many microcomputers on the same serial link. Information is transferred
as a block of frames from a particular source to some destination(s). The TMS70X1 has
features to identify the start of blocks, and suppress interrupts and status information from the
RX until a block start is identified.

2-37

2.7.3.1

2-38

In both multiprocessor modes the sequence is as follows: the serial port wakes up at the start
of a block and the TMS70X1 CPU reads the first few frames (containing a destination address).
If the block is addressed to the microcomputer the CPU reads the rest of the block; if not it puts
the serial port to sleep again and therefore will not receive serial port interrupts until the next
block start.

In order to provide more flexibility, the TMS70X1 implements two multiprocessor protocols,
one supported by Motorola and the other by Intel. These protocols are described in the

following paragraphs. The Motorola protocol is compatible with the Motorola MC6801

processor mode and the Intel protocol is compatible with the Intel protocol for the 8051. The

mode of TMS70X1 multiprocessor protocol is software selectable via the MULTI bit in the

SMODE register (see section 2.7.5). Both formats use the WU and SLEEP flags to control the

TX and RX features of these modes.

Because the Intel multiprocessor mode contains an extra address/data bit, it is not as efficient
as the Motorola mode in handling large blocks (over 10 bytes) of data. The Intel mode on the
other hand, is more efficient in handling many small blocks of data because it does not have to
wait in between blocks of data as does the Motorola mode.

Motorola (MC6801) Protocol

In this protocol, blocks are distinguished by having a longer idle time between the blocks than
between frames in the blocks. An idle time 10 bits or more after a frame indicates the start of a
new block.

In the Motorola mode of multiprocessor communications, the processor wakes up (serial port
resets the SLEEP bit to 0) after the block start signal. The processor will now recognize the next
serial port interrupt. The user’s service routine then receives the address sent out by the
transmitter and compares this address to its own. If the CPU is addressed, the service routine
will not set the SLEEP bit, and receive the rest of the block. If the CPU is not addressed, the
service routine sets the SLEEP bit (in software) to a 1. This lets the CPU continue to execute its
main program without being interrupted by the serial port. The serial port will set the SLEEP bit
to O whenever it detects a block start signal.

There are two ways to send a block start signal. The first is to deliberately leave an idle time of
10 bits or more by delaying the time between the transmission of the last frame of data in the
previous block and the address frame of the new block. In the second way, the TMS70X1
implements a more efficient method of sending a block start signal. Using the wake up (WU)
bit, an idle time of exactly one frame (timed by the serial port) can be sent. The serial
communications line is therefore not idle any longer than necessary.

Associated with the WU bit is the wake up temporary (WUT) flag. WUT is an internal flag,
double buffered with WU. When TXSHF is loaded from TXBUF, WUT is loaded from WU and
WU is reset to 0. This configuration is shown in Figure 2-23.

wu ~ TXBUF

, U

WwuT TXSHF

FIGURE 2-23 — DOUBLE BUFFERED WUT AND TXSHF
Sending out a block start signal of exactly one frame time is accomplished as follows:

A 1 must first be written to the WU bit. Then a data word (don’t care) must be written to the
TXBUF. When the TXSHF is free again, the contents of the TXBUF are shifted to the TXSHF,
and the WU value is shifted to WUT. If the WU bit had been set to a 1, the start, data, and parity
bits will be suppressed and an idle period of one frame, timed by the serial port, will be
transmitted. The next data word, shifted out of the serial port after the block start signal, will be
the second data word written to the TXBUF after writing a 1 to the WU bit. The first data word
written is suppressed while the block start signal is sent out, and ignored after that.

However, writing the first don’t care data word to the TXBUF is necessary so the WU bit value
can be shifted to WUT. After the don't care data word is shifted to the TXSHF, the TXBUF (and
WU if necessary) may be written to again, since WUT and TXSHF are both double buffered.

Although the RX still operates when the SLEEP bit is 1, it will not set RXRDY, INT4 FLG, or the

error status bits to 1. The RX will set the SLEEP bit to O if it times an appropriate 10 bit idle time
on RXD. The Motorola multiprocessor communication format is shown in Figure 2-24.

/ BLOCKS (1F FRAMES \

r \ r \ F \

momeo [JTL_J L _JOL J, L J0LIJ0L J, L JL]

RXD/TXD

t— IDLE PERIODS OF 10 BITS OR MORE ——f

oy st ADDR Terlst[oata Jer Ist[oata Jsp
\

2.7.3.2

A A,
4 v
FIRST FRAME WITHIN FRAME WITHIN
BLOCK IS ADDRESS. BLOCK
IT FOLLOWS IDLE
PERIOD OF 10 BITS IDLE PERIOD
OR MORE. LESS THAN 10 BITS

FIGURE 2-24 — MOTOROLA MULTIPROCESSOR COMMUNICATION FORMAT
Intel (I8051) Protocol
In the Intel protocol, the frame has an extra or address bit just before the parity bit. Blocks are

distinguished by the first frame(s) in the block with the address bit set to 1, and all other frames
with the address bit set to 0. The idle period timing is irrelevant.

2.7.4

2-40

The WU bit is used to set the address bit. In the TX, when the TXBUF and WU are loaded into
the TXSHF and WUT, WU is reset to O and WUT is the value of the address bit of the current
frame. Thus, to send an address, the WU bit must be set to a 1, and the appropriate address
value should then be written to the TXBUF. When this address value is transferred to the
TXSHF and shifted out, its address bit will be sent as a 1, which flags the other processors on
the serial link to read the address. Since the TXSHF and WUT are both double buffered, the
TXBUF and WU may be written to immediately after TXSHF and WUT are loaded. To transmit
non-address frames in the block, the WU bit must be left at O.

On the serial link, all processors set their SLEEP bit to 1 so that they will only be interrupted
when the address bit in the data stream is a 1. When the processors receive the address of the
current block, they compare it to their own addresses and those processors which are
addressed set their SLEEP bit to a 1, so that they will read the rest of the block.

Though the RX still operates when the SLEEP bit is 1, it will not set RXRDY, INT4 FLG, or the
error status bits to 1 unless the address bit in the received frame is a 1. The RX does not alter
the SLEEP bit: this must be done in software. The Intel multiprocessor communication format
is shown in Figure 2-25.

/— sLocks OF FRAMES \

Rxorxo []tL JtL], I*L J’l J L, L]
IDLE PERIOD OF NO SIGNIFICANC’f f J
RXD/TXD
expanoes. BSTL ADDR [1]splst] DATA Jojse Istl DATA Jo]se
A J
\ v

FIRST FRAME WITHIN ADDR/DATA BIT

BLOCK IS ADDRESS. IS 0 FOR FRAME

THE ADDR/DATA BIT WITHIN BLOCK.

IS 1.

IDLE TIME IS OF
NO SIGNIFICANCE.
FIGURE 2-25 — INTEL MULTIPROCESSOR COMMUNICATION FORMAT
Timer 3

Timer 3 is a simplified version of Timer 1 and 2 and, like Timer 2, is only available on the

TMS70X1 versions of the TMS7000 family. Figure 2-26 is a block diagram of Timer 3.

2-BIT 8-8IT LATCH

LATCH T3DATA (7-0)
2-BIT

Py, pu——

PRESCALER 8 8-BIT TIMER

'

READ FROM T3DATA (7-0)

SET T3FLG =1 eowed

SET INT4FLG =1, IF T3ENB =1 @—

RX/TX GENERATED

-t ———4
INTERNAL SCLK DIVIOE BY 2

FIGURE 2-26 — TIMER 3 BLOCK DIAGRAM

Timer 3 is accessed through T3DATA (similar to TIDATA and T2DATA), and SCTL1 (shared
with RX/TX functions). The clock source for Timer 3 is internal only, and has a frequency of
/2. Timer 3 is a free running clock and is updated with new timer values when it decrements
through zero.

Timer 3 consists of a 2-bit prescaler and an 8-bit timer. Both the prescaler and the timer are
reloaded from 2-bit and 8-bit latches respectively, when they decrement through zero. The
latches are write only, but the 8-bit counter can be read.

The Timer 3 output goes to the serial port via a divide by two circuit, producing an equal
mark-space ratio internal SCLK. The baud rate generated by Timer 3 is user programmable and
is determined by the value of the 2-bit prescaler and the 8-bit timer latch. The equations for
determining the baud rates for both the asynchronous and isosynchronous modes are as
follows:

[
64x(PL + 1) x(TL + 1)

Asynchronous Baud Rate =

[
4x(PL+ 1)x(TL+ 1)

Isosynchronous Baud Rate =

where:

fosc =crystal frequency

) = Internal machine clock frequency

(either 1/4 or 1/2 of fogc depending on clock choice)
PL = Timer 3 prescale latch value
TL = Timer 3 latch value

For example, to program the serial port to operate at 300 baud in the asynchronous mode (with
¢ = 2.5 MHz), the prescaler value is set to O and the latch value set to 129 decimal, or >81.

2-41

2.7.5

2.7.5.1

2-42

The Timer 3 output always sets T3FLG to 1, and sets INT4 FLG to 1 if TBENB is a 1 when the
timer and prescaler decrement through O. This allows Timer 3 to be used as a utility timer if it is
not used by the serial port. Timer 3 and its flags are not affected by the serial port software
reset, UR. Therefore, Timer 3 may be used independently of the serial port.

Serial Port Registers
Mode Register (SMODE)

SMODE (see Figure 2-27) is a write-only register and is accessed through P17 in the peripheral
file. It describes the character format and type of communications mode (asynchronous or
isosynchronous). SMODE is only accessible after a hardware reset or after resetting the UART
through the UR bit. It must be the first register written to in the serial portimmediately following
a reset. After writing to the SMODE register, it cannot be accessed without first performing a
reset operation. The first operation to location P17 in the peripheral file, immediately following
a reset, will access the SMODE register. All subsequent writes to P17 will access the control
register (SCTLO).

(First write after RESET)
PF
number: 7 6 5 4 3 2 1 0
P17
Address: STOP SI0O |PEVEN| PEN |[CHAR1[{CHARO[COMM|MULTI| WRITE ONLY
>0111

| ' 0O = Motorola protocol

'¢-1 = Intel protocol

l¢-0 = Isosynchronous
communication
Asynchronous
communication
00 = 5 bits/character
‘4 01 = 6 bits/character

10 = 7 bits/character

11 = 8 bits/character

1

4— 1 = Parity enabled
O = Parity disabled

1 = Even parity
0 = 0dd parity

L4~ 0 = Serial /0 mode
1 = Communication mode

€40 = One stop bit
1 = Two stop bits

FIGURE 2-27 — SERIAL MODE REGISTER - SMODE

NOTE

If the serial port is configured so that some features are irrelevant, then the
corresponding flags are don’t care. For example, when configured in the serial /O
mode, bits 7, 4, 1, and O are Don't Cares.

MULTIPROCESSOR MODE (MULTH) BIT O:

There are two possible multiprocessor protocols, the Motorola and the Intel. Both are described
in Section 2.7.3. Setting this bit to a O selects the Motorola protocol; settingit to a 1 selects the
Intel protocol. The multiprocessor communication is different from the other communication
modes in that the multiprocessor mode uses the Wake-Up and the Sleep functions.

COMMUNICATIONS MODE (COMM) BIT 1:

This bit determines the serial port mode of communication. Setting the bit to 1 selects the
asynchronous mode. In this mode the bit period is 16 times the SCLK period and bits are read
on a two out of three vote basis. Setting the bit to O selects the isosynchronous mode. in this
mode, the bit period is equal to the SCLK period and bits are read on a single value basis. These
modes of operation are described in section 2.7.2.

NUMBER OF BITS PER CHARACTER (CHAR1 ,CHARO) BITS 2,3:

Characters are programmable to 5, 6, 7 or 8 bits. Characters of less than 8 bits are
right-justified in RXBUF and TXBUF. Characters of less than 8 bits are padded with leading
zeros in the RXBUF. The unused leading bits in the TXBUF may be written as don’t care values.
The RXBUF and TXBUF register formats are given in sections 2.7.5.6 and 2.7.5.7.

PARITY ENABLE (PEN) BIT 4:

If parity is disabled then no parity bit is generated during transmission or expected during
reception. A received parity bit is not transferred to the RXBUF with the received data as it is
not considered one of the data bits when programming the character field.

PARITY EVEN (PEVEN) BIT 5:

If PEN is set, then this bit defines odd or even parity according to the number of odd or even 1
bits in both transmitted and received characters.

SERIAL /0 OR COMMUNICATION MODE (SIO) BIT 6:

This bit determines whether the serial port operates in the serial I/O mode or one of the
communication modes. Setting this bit to a O sets the serial port in the serial I/O mode. Deletion
of the start and stop bits, in conjunction with an internal 1x clock, allows ease of I/O expansion
by use of external shift registers. Setting this bit to a 1 selects the communication mode. When
this bit is set to 1 the COMM bit determines whether the serial port is in the asynchronous or
isosynchronous mode.

NUMBER OF STOP BITS (STOP) BIT 7:
This bit determines the number of stop bits sent when the serial port is in one of the

communication modes. Setting this bit to a O selects one stop bit, and setting it to a 1 selects
two stop bits. The receiver checks for one stop bit only.

2-43

2.7.5.2

2-44

Serial Control O Register (SCTLO)

SCTLO (see Figure 2-28) is a write-only register, and is accessed through P17 of the peripheral
file. The SCTLO register is used to control the serial port functions, such as transmit and receive
enable, clearing of error flags and software reset. After a hardware or software reset, the
SMODE register must be written to before accessing the SCTLO register, since the SMODE and
SCTLO registers are accessed through the same location. Any subsequent writes to this
register location (P17) will load the SCTLO register. SCTLO is cleared by a reset (hardware or
software).

PF number: 7 6 5 4 3 2 1 0

P17

Address: X UR X ER X | RXEN | X | TXEN| WRITE ONLY
>0111

1 = Transmitter enabled
0 = Transmitter disabled

1 = Receiver enabled
0O = Receiver disabled

'4—1 = Reset error flag
O = Noreset flags

4~ 1 = Reset serial port
0 = Noreset

FIGURE 2-28 — SERIAL CONTROL 0 REGISTER - SCTLO
TRANSMIT ENABLE (TXEN) BIT O:

Data transmission through TXD cannot take place unless this bit is set to a 1. When resetting to
a 0, the transmission is not halted until all the data previously written to TXBUF has been sent.
TXEN is set to O by a reset (hardware or software).

RECEIVE ENABLE (RXEN) BIT 2:

In the communication modes (asyhnchronous and isosynchronous) setting the RXEN bit to 1

allows RX to set INT4 FLG, and enable RXRDY. When reset to O, this bit prevents received
characters from being transferred into the receiver buffer, and no RXRDY interrupt is
generated. However, the receiver shift register continues to assemble characters. Thus, if
RXEN is set partially through reception of a character, it will be transferred complete into
RXBUF. In the serial I/O mode writing a 1 to RXEN initiates RX operation. If an internally
generated SCLK is used, a gated SCLK at pin A6 is enabled. When the entire frame is received,
RX disables SCLK and sets RXRDY and INT4 FLG to a 1, and RXEN to 0. RXEN has no direct
effect on RXRDY or INT4 FLG in this mode. RXEN is set to O by UR.

ERROR RESET (ER) BIT 4:

Writing a 1 to this bit clears all three error flags in the SSTAT register (PE, OE, FE). Writing a O
has no effect.

2.7.5.3

SOFTWARE UART RESET (UR) BIT 6:

Writing a 1 to this bit puts the serial port in the reset condition, and enables the SMODE register
for initialization. A6/SCLK is put in the high impedance state (input), the TXD signal is held at 1,
so that the B3 pin may be used as a general purpose output line (see Figure 2-19). Untila O is
written to UR, all affected logic is held in the reset state. UR must be set to O before the
TMS70X1 CPU can write a 1 to CLK and output SCLK on Port A. UR is set to 1 by reset
(hardware). The UART Reset affects only the items above and it is not a general device reset
like the RESET pin.

Serial Port Status Register (SSTAT)

This status register (see Figure 2-29) is a read-only register and is accessed through P17 of the
Peripheral File. It is used for determining the status of the serial port. Bits O, 1, and 6 of this
register are cleared by a reset (hardware or software).

7 6 5 4 3 2 1 0
PF number: P17
Address: >0111 0 RKDT| FE OE PE TXE | RXRDY | TXRDY READ ONLY

‘4~ 1 = TXBUF ready
for character
0 = TXBUF full

1 = RXBUF ready with
new character
0 = RXBUF empty

4 1 = Transmitter empty
0 = Transmitter written to

-

<4 1 = Overrun error

O = No overrun error
1 = Framing error

0 = No framing error

1 = Parity error
0 = No parity error

4~ 1 = Break detected
0 = No break

FIGURE 2-29 — SERIAL PORT STATUS REGISTER - SSTAT

TRANSMITTER READY (TXRDY) BIT O:

The TXRDY bit is set by the transmitter to indicate that TXBUF is ready to receive another
character, and is automatically reset when a character is loaded. The serial port interrupt (INT4)
is issued at the same time (if enabled) the TXRDY bit is set. This bit is set to 1 by UR.

RECEIVER READY (RXRDY) BIT 1:

This bit is set by the receiver to indicate that RXBUF is ready with a new character, and is
automatically reset when the character is read out. The serial port interrupt (if enabled) is
issued at the same time the RXRDY bit is set. RXRDY is set to O by UR.

2-45

2.7.5.4

2-46

TRANSMITTER EMPTY (TXE) BIT 2:

The TXE bit is set to 1 when the transmitter shift register and TXBUF are empty, and reset to O
when the TXBUF is written to. This bit is set to 1 by UR.

PARITY ERROR (PE) BIT 3:

PE is set when a character is received with a mismatch between the number of 1s and its parity
bit. This bit is reset by the ER bit in SCTLO.

OVERRUN ERROR (OE) BIT 4:

The overrun error bit is set when a character is transferred into RXBUF before the previous
charater has been read out. The previous character is overwritten and lost. OE is reset by the
ER bitin SCTLO.

BREAK DETECT (BRKDT) BIT 6:

The BRKDT bit will show that a break condition has occurred. BRKDT is set if the RXD line
remains continuously low for 10 bits or more, starting from the end of a frame (stop bit). When
the break ends, BRKDT is set to a O immediately. In the serial I/O mode BRKDT remains a 0. This
bit is reset to O by UR. A break is generated by setting Port B bit 3 low. Setting B port bit 3 high
again resumes operation of the TXD line.

Figure 2-16, Serial Port 1/0 Logic, shows how the TXD and RXD lines are multiplexed on I/0
lines B3 and A5 respectively. This configuration allows the TXD and RXD pins to be used as I/0
pins if desired. If transmission is disabled, then TXD follows B3. If reception is disabled, then no
receiver interrupts occur and A5 is an input bit.

FRAMING ERROR (FE) BIT 5:

The FE bit is set when a character is received with a O stop bit. The stop bit indicates that
synchronization with the start bit has been lost and the character is incorrectly framed. FE is
reset by the ER bitin SCTLO.

Serial Control 1 Register (SCTL1)
The SCTL1 (see Figure 2-30) is a read/write register and is accessed through P21 in the

peripheral file. This register is used to control the source of SCLK, multiprocessor
communications, Timer 3 interrupt, and the Timer 3 prescaler value.

1 = Timer 3 decremented through zero

O = T3FLG was cleared by software
or T3FLG was set by software

Pf number 7 6 5 4 3 2 1 0

P21

' 0 CLK SLEEP wu T3FLG | T3ENB [PRE3(1) |PRE3(0) | READ
Address:

>0115 X CLK | SLEEP WU | T3FLG | T3ENB |PRE3(1)|PRE3(0)| WRITE

I]
2-Bit prescale

latch for Timer

0 = Disables T3 interrupt
toset INT4 FLG

= Enables T3 interrupt
toset INT4 FLG

€& 0 = Clear T3FLG
1 = Set T3FLG

Lg¢— Controls TX multiprocessor communication

.¢— Controls RX multiprocessor communication

'4—0 = External SCLK from pin A6/SCLK
1 = Internal SCLK from Timer 3

FIGURE 2-30 — SERIAL CONTROL 1 REGISTER - SCTL1

TIMER 3 PRESCALE LATCH (PRE3(1), PRE3(0)) BITS O, 1:

These bits act as the prescale bits for Timer 3. The internal clock input to the Timer 3 is either
fosc/4, /8, /16, or /32 (/2 option) or fosc/8. /16, /32, or /64 (/4 option) depending on the
setting of these bits. The output of timer 3 divided by 2 is the actual baud rate for the
isosynchronous mode or divided by 32 for the asynchronous mode.

TIMER 3 INTERRUPT ENABLE (T3ENB) BIT 2:

When T3ENBis settoa 1, Timer 3 will set INT4FLGto a 1 whenitsets T3FLG toa 1. T3ENB s
reset to O by a hardware reset, but not by UR. This allows Timer 3 to operate independently of
the serial port.

TIMER 3 INTERRUPT FLAG (T3FLG) BIT 3:

The T3FLG bit is set to a 1 when both the Timer 3 prescaler and Timer 3 decrement through
zero together. T3FLG indicates that Timer 3 was the source of the serial port interrupt. T3FLG
must be cleared by software in the T3 interrupt service routine, since it is not cleared when the
INT4 vector is fetched by the CPU. This bit is also reset to O by a hardware reset, but not by UR.
This allows Timer 3 to operate independently of the serial port.

2-47

2.7.5.5

2.7.5.6

2-48

WAKE UP (WU) BIT 4:

The WU bit controls the TX features of the multiprocessor modes (Section 2.7.3). WU is reset
to O by UR and cannot be set again until UR is cleared.

SLEEP (SLEEP) BIT 5:

The SLEEP bit is used to control the RX features of the multiprocessor modes (Section 2.7.3).
This bit is reset to O by UR.

SERIAL CLOCK SOURCE (CLK) BIT 6:

The CLK determines the source of SCLK. Setting this bit to a O selects an external SCLK, which
is input on the high impedance A6/SCLK line. Setting it to a 1 selects an internal SCLK, derived
from Timer 3. This signal is output on the low impedance A6/SCLK line. The CLK bit is reset to
0 by UR and cannot be set again until UR is cleared.

Timer 3 Data Register

The Timer 3 Data register - T3DATA (see Figure 2-31) is a read/write register and is accessed
through P20 in the Peripheral File.

7 I 6 ‘ 5] 4 } 3 I 2 , 1 I 0
PF number:P20 msb CURRENT TIMER VALUE Isb |READ
Address: >0114

msb TIMER LATCH VALUE (TL) Isb |WRITE

FIGURE 2-31 — TIMER 3 DATA REGISTER - T3DATA
Receiver Buffer

The receiver buffer - RXBUF (see Figure 2-32) is a read-only register and is accessed through
P22 in the Peripheral File. This register contains the current data from the RX. Writing has no
direct effect on this register. Note that the read/write sequence of the MOVP instruction (as
well as ORP, XORP, ANDP) performs a read before a write. This action will perform a spurious
clearing of the RXBUF, and will set RXRDY to O. Data in the RXBUF is right justified with padded
Os.

7 | 6 I 5 | 4 ‘ 3 ‘ 2 | 1 ' 0
PF number:P22 msb RECEIVER DATA Isb
Address: >0116
0 0 0O 44— b5databits———p
0 0O 4&————6databits—————p
0 <« 7 data bits
<4— 8 data bits »

FIGURE 2-32 — RECEIVER BUFFER - RXBUF

2.7.5.7

2.7.6

2.7.7

Transmitter Buffer

The transmitter buffer - TXBUF (see Figure 2-33) is a write-only register and is accessed
through P23 in the Peripheral File. This register contains the data to be transmitted by the TX.
Reading P23 returns >00. Data written to the TXBUF must be right justified since the left-most
bits will be ignored for characters less than eight bits in length.

7 | s | 5 ‘ 4 l 3 I 2 l 1 { 0
PF number:P23 msb TRANSMITTER DATA Isb
Address: >0117
X X X <&——bdatabits———p
X X <4———————6 databits— >
X <« 7 data bits 2
< 8 data bits >

FIGURE 2-33 — TRANSMITTER BUFFER - TXBUF
Serial Port Initialization

To use the serial port on the TMS70X1, the user must first initialize it. After initialization, the
serial port is operated by simply reading and writing to Peripheral File registers. Initialize the
serial port as follows:

1) Set B3 Data value to 1. This allows the TXD line to transmit.

2) Write to the SMODE register (P17). This sets the character format and the type of
communication mode.

3) Write to the SCTLO register (second write to P17) to set the UR bit to 0. This same write
can also enable the transmitter, receiver, or both.

Once the serial port is initialized it can be operated continuously in the selected operational
mode. If the mode needs to be changed, the serial port must be reset, and then reinitialized for
the desired mode. The serial port can be reset in two ways; hardware reset (via RESET pin), or
software reset (via UR bitin SCTLO).

Serial Port Interrupts

INT4 is dedicated to the serial port. Three sources can generate an interrupt through INT4: the
transmitter (TX), the receiver (RX), and Timer 3 (T3). Setting TXEN to a 1 allows data loaded
into the TXBUF to be shifted into the TXSHF. The TX sets TXRDY and INT4 FLG to 1 when
TXSHF is loaded from TXBUF.

In the communication modes, if RXEN is set to 1 the RX sets RXRDY and INT4 FLG toa 1 when
RXBUF is loaded from RXSHF. If RXEN is O, the RXSHF still receives frames and shifts them
into the RXBUF, but RXRDY and INT4 FLG are held to O. If a character is in RXBUF, and RXEN is
then setto a 1, RXRDY and INT4 FLG will be setto 1.

In the serial I/O mode the RXEN is set to initiate the reception of a frame. When the last bit of
the frame is received RXEN is reset to O.

2-49

2.8

2-50

However, RXRDY and INT4 FLG are still set to 1 when the character is shifted from RXSHF to
RXBUF. RXRDY and INT4 FLG bits are not masked by RXEN.

Timer 3 sets T3FLG, and INT4 FLG if T3ENB = 1, when its prescaler and timer decrement
through O together.

Thus when INT4 is acknowledged by the CPU; RXRDY, TXRDY, and T3FLG are the flags to
indicate its source. The INT4 service routine must determine which of these sources caused
INT4 in the specific application. For example, if all three are likely sources, the INT4 service
routine must check for the following possible situations:

1) RXRDY only
2) TXRDY only
3) T3only

4) RXRDY, TXRDY, T3
5) RXRDY, TXRDY

6) RXRDY, T3
7) TXRDY, T3
8) None

The last situation check is necessary because RXRDY, TXRDY, or T3FLG can set INT4 FLG.
Therefore it is possible that one or more interrupts may occur between CPU acknowledgement
of INT4 and INT4 service routine testing of RXRDY, TXRDY, and T3FLG. The INT4 FLG bit is
cleared by the CPU when it acknowledges INT4. If a second source of INT4 is set in the time
between this clearing and the software testing, the second or third interrupts will be serviced
by current INT4 service routine. Thus when INT4 is again acknowledged (INT4 FLG was set
again by the second interrupt) RXRDY, TXRDY, and T3FLG will all be set to O.

PIN DESCRIPTION

Table 2-9 and Table 2-10 defines the pin assignments and describes the function of each pin for
the Single-Chip, Peripheral Expansion, Full Expansion, Microprocessor and Emulator modes for
the TMS70X0 and TMS70X1. All the TMS7000 family devices discussed in this manual are
pin compatible. Some pins on 70X1 devices have extra functions and CMOS devices have
different electrical specifications (see Section 4).

TABLE 2-9 — SC, PE, FE, AND MICROPROCESSOR PIN ASSIGNMENTS

APPLICABLE
SIGNATURE [} DESCRIPTION SECTIONS
AO /10 AO0-A4 and A7 are general purpose bi-directional 2.2
A1 1/0 pins and A5,A6 are input-only general purpose 2.3
A2 I/0 pins for the 70X1 only.
A3 110 AO-A7 are general purpose input pins for
Ad 1/0 70XO0 devices.
A5/RXD IN Serial port receiver 2.71
A6/SCLK /0 Serial port clock, input or output 2.7.2
A7 110 Real Time Clock used to decrement Timer 1 2.6.1
BO ouT B0-B3 Output only pins 2.2
B1 ouT B4-B7 Output only pins in single chip mode 2.3
B2 ouT B4-B7 Memory interface in all other modes
B3/TXD ouT Serial port transmitter in 70X 1 devices only 2.7.1
B4/ALATCH ouT Memory interface Address Latch strobe
B5/ RW ouT Memory interface Read or Write signal
B6/ENABLE ouT Memory interface Enable strobe
B7/CLOCKOUT| OUT Internal clock out
Cco 1/0 General purpose bi-direction pins in single 2.2
C1 1/0 chip mode 2.3
Cc2 110
C3 110 Multiplexed low address and data bus in
C4 110 all other modes
C5 110
cé6 110
Cc7 110
DO 110 General purpose Bi-direction pins in single 2.2
D1 110 chip and peripheral expansion modes 2.3
D2 1/0
D3 110 High address bus in Full Expansion and
D4 1/10 Microprocessor modes
D5 110
D6 110
D7 110
INT1 IN Maskable interrupt of higher priority 2.4
INT3 IN Maskable interrupt of lower priority 2.4
RESET IN Device reset 2.5.2
MC IN Mode control 2.3
XTAL2/CLKIN IN Crystal input for control of internal oscill. 2.5
or input pin for external oscill.
XTAL1 IN Crystal input for control of internal oscill. 2.5
leave open for external oscill.
vce IN Supply voltage (+5V NMOS, 3 to 6V for CMOS)
Vss IN ground reference

2-51

BS/RW 1 Vss
B7/CLOCKOUT 2 B6/ENABLE
B0 3 B4/ALATCH
Bl 4 B3
B2 5 mc
A0 6 c7
Al 7 C6
A2 8 cs
A3 9 ca
A4 10 c3
A7 11 c2
INT3 12 c
iINTT 13 co
RESET 14 DO
A6 15 D1
A5 16 Vce
XTAL2/CLKIN 17 D2
XTAL1 18 D3
D7 19 D4
D6 20 D5
BS/RW 1 Vss
B7/CLOCKOUT 2 B6/ENABLE
B0 3 B4/ALATCH
B1 4 B3/TXD
B2 5 mc
A0 6 c7
Al 7 cé
A2 8 C5
A3 9 ca
A4 10 c3
A7 1N c2
INT3 12 c1
INTT 13 co
RESET 14 Do
A6/SCLK 15 D1
AS/RXD 16 Vee
XTAL2/CLKIN 17 D2
XTAL1T 18 D3
D7 19 D4
D6 20 DS

FIGURE 2-34 — SC, FE, PE, AND MICROPROCESSOR MODE PIN ASSIGNMENTS

2-52

TABLE 2-10 — SYSTEM EMULATOR MODE PIN ASSIGNMENTS

APPLICABLE
SIGNATURE 1/0 DESCRIPTION SECTIONS
AO 1/0 Not Connected 2.3.5
A1l 110 NC
A2 110 NC
A3 1/0 NC
A4 /0 NC
AB/RXD IN NC
AB/SCLK 110 NC
A7 110 NC
BO ouT NC
B1 ouT NC
B2 ouT NC
B3/TXD ouT Interrupt Acknowledge 2.5.3
B4/ALATCH ouT Memory interface Address latch 2.3.5
BS/RW__ | OUT Memory interface Read or Write 23
B6/ENABLE ouT Memory interface Memory Enable
B7/CLOCKOUT | OUT Internal clock out
co 110 ADDRO
C1 1/0 ADDR1 2.3
Cc2 110 ADDR2 Multiplexed low address and data bus
Cc3 1/0 ADDR3
C4 1/0 ADDR4
C5 110 ADDR5
C6 110 ADDR6
Cc7 110 ADDR7
DO 1/0 ADDR8 2.2
D1 1/0 ADDR9 2.3
D2 1/0 ADDR10
D3 110 ADDR1 1 High order address byte
D4 110 ADDR12
D5 110 ADDR13
D6 1/0 ADDR14
D7 110 ADDR15
NMI IN Non-Maskable interrupt of higher priority 2.3.5
INT IN Maskable interrupt of lower priority 2.3.5
Note: This pin is NC on the CMOS version
RESET IN Device reset 2.5.2
MC IN Mode control: must be held at + 14 Volts 2.3
XTAL2/CLKIN IN Crystal input for control of internal oscill. 2.5
or input pin for external oscill.
XTAL1 IN Crystal input for control of interanl oscill. 25
leave open for external oscill.
vee IN Supply voltage (+5 V NMOS, 3V to 6V for CMOS)
Vss IN Ground reference

2-53

B5/RMW 1 Vss
B7/CLOCKOUT 2 B6/ENABLE
BO 3 B4/ALATCH
BT 4 B3/INTA
B2 5 MC
A0 6 c7
A1 7 cé
A2 8 cs
A3 9 ca
A3 10 c3
A7 1 c2
NMI 12 c1
INT 13 co

RESET 14 DO
A6 15 D1
A5 16 Vce

XTAL2/CLKIN 17 D2

XTAL1 18 D3
D7 19 D4
D6 20 D5

FIGURE 2-35 — SYSTEM EMULATOR MODE PIN ASSIGNMENTS

2-54

3.1

STANDARD INSTRUCTION SET
The TMS7000 instruction set is composed of 61 instructions that provide for input, output,
manipulation, and comparison of data. The instruction set is divided into eight functional
categories:

ARITHMETIC INSTRUCTIONS

BRANCH AND JUMP INSTRUCTIONS

COMPARE INSTRUCTIONS

CONTROL INSTRUCTIONS

LOAD AND MOVE INSTRUCTIONS

LOGICAL INSTRUCTIONS

SHIFT INSTRUCTIONS

1/0 INSTRUCTIONS
Refer to the TMS7000 ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE (MP 916) for a
detailed description of the instruction set, machine formats, addressing modes, and other
information relevant to the execution of a TMS7000 assembly language program. The
sections that follow summarize the key features of the TMS7000 Assembler.

DEFINITIONS

The symbols used in the instructions are listed and defined in Table 3-1.

31

3-2

TABLE 3-1 — TMS7000 SYMBOL DEFINITIONS

SYMBOL DEFINITION
$ Current value of Program Counter
A Register A or RO in Register File
B Register B or R1 in Register File
b Bitnumberasinb7 (0 <=b <= 7)
Rn Register n of Register File (0 < =n < = 127)
Rn-1 Regsiter File numbern-1(0 < =n <= 127)
Pn Port n of Peripheral File (0 < = n < = 255)
PC Program Counter
IPC Interpretive Program Counter
ST Status Register
SP Stack Pointer
s Source operand (either a reg or an immed 8-bit operand)
Rs Source register in Register File (0 < = s < = 127)
d Destination operand (always a register)
Rd Destination register in Register File (0 <=d < = 127)
Pd Destination in peripheral file
Rd-1 Register File numberd-1 (0 <=d <= 127)
iop Immediate operand
ra Relative Address (ra = ta - pcn)
ta Target Address (ta =ra pcn)
pcn Location of the next instruction
cnd Condition
@ Indicates an address or label
% Indicates immediate operand
* Indicates Indirect Register File Addressing Mode
> Hexidecimal number
MSB Most significant byte or bit
LSB Least significant byte or bit

3.2

3.2.1

3.2.1.1

ADDRESSING MODES

The TMS7000 Assembly Language supports eight addressing modes. Five of these modes
specify 8-bit operands and are classifed as Direct Addressing Modes. The remaining three
addressing modes generate a 16-bit address and are classified as Extended Addressing Modes.
Table 3-2 summarizes both classifications.

TABLE 3-2 — TMS7000 ADDRESSING MODES

ADDRESSING SEE
CLASS MODE EXAMPLE SECTION
DIRECT | SINGLE REGISTER LABEL DEC B

INC R45

CLR 23 3.2.1.1
REGISTER FILE LABEL MOV BA

ADD AR17

CMP R32,R73 3.2.1.2
PERIPHERAL FILE LABEL XORP AP17

MOVP P42,B 3.2.1.3
IMMEDIATE LABEL AND % >C5,R55

ANDP %VALUE,P32

BTJO % >D6,R80,LABEL 3.2.1.4
PROGRAM COUNTER
RELATIVE LABEL1 JMP LABEL

DJNZ A,LABEL

BTJO %>16,R12,LABEL

BTJOP B,P7,LABEL 3.2.1.5

EXTENDED | DIRECT MEMORY LABEL LDA @>F3D4

CMPA @LABEL 3.2.2.1
REGISTER FILE
INDIRECT LABEL STA *R43 3.2.2.2
INDEXED LABEL2 BR @LABEL(B) 3.2.2.3

Direct Addressing Modes

The five Direct Addressing modes specify 8-bit operands. Each is described in the following
sections.

Single Register Addressing Mode

The Single Register Addressing mode specifies a single register in the Register File as
containing the 8-bit operand. The register can be sepcified as Rn or n (See Table 3-2), where nis
the Register File number and O is less than or equal to n which is less than or equal to 127.
When specifying either the A or B register, A or B can be substituted for RO or R1 respectively in
the operand field of the assembly language statement. As is explained in Section 3.3.1,
instructions using the Single Register Addressing mode are also called implied operand
instructions if either the A or B register is specified. Instructions using the Single Register
Addressing Mode and specifying Rn, where 2 is less than or equal to n which is less than or

3-3

equal to 127, are also called single operand instructons and are described in Section 3.3.2.
Figure 3-1 illustrates the object code generated by a Single Register instruction for the the
following cases:

Rn (where O less than or equal to n which is less than or equal to

Case 1: <inst> A
<inst> B
Case 2: <inst>
127)
(PC) opcode (PC)
(PC+1)
CASE 1

opcode

Rn

CASE 2

(Where 0 < n < 127)

FIGURE 3-1 — SINGLE REGISTER ADDRESSING MODE OBJECT CODE

3.2.1.2 Register File Addressing Mode

The Register File Addressing mode specifies a source and a destination register in the Register
File as containing the 8-bit operands. As illustrated in Table 3-2, the assembly language
statement specifies the source register before the destination register. Figure 3-2 illustrates the
object code generated by an instruction using the Register File Addressing mode for the
following cases:

Case 1:

Case 2:

Case 3:

<inst>

<inst>
<inst>
<inst>

<inst>
<inst>
<inst>

B.A

A,B
Rs,A
Rs,B

A,Rd
B,Rd
Rs,Rd

NOTE: The MOV instruction is uniquely defined for Register File Addressing mode. Refer to Table 3-8 for definition.

3-4

(PC) — opcode

3.2.1.3

CASE 1

(PC) —— opcode
(PC+ 1) —» s
CASE 2

(PC) opcode
(PC+1) —» s
(PC+2) —# d

CASE 3

FIGURE 3-2 — REGISTER FILE ADDRESSING MODE OBJECT CODE

Peripheral File Addressing Mode

The Peripheral File Addressing mode is used to perform I/O tasks. Each PF register is an 8-bit
port which can be referred to as Pn or n, as shown in Table 3-2. There are four instructions that
use the Peripheral File Addressing mode: MOVP, ANDP, ORP, and XORP. BTJOP and BTJZP are
also peripheral instructions but they have a different format which is discussed in Section
3.3.4.3. All four instructions may be executed using either the A or B register as the source
register and Pn as the destination register. However, only the MOVP instruction may also be
executed using the Pn as the source register and either A or B as the destination register. Figure
3-3illustrates the object code generated by an instruction using the Peripheral File Addressing
mode for the following cases:

Case 1:

Case 2:

<inst> A,Pn
<inst> B,Pn

MOVvP Pn,A

MOVP Pn,B
(PC) —» opcode
(PC+1) —f Pn

CASES 1 AND 2

FIGURE 3-3 — PERIPHERAL FILE ADDRESSING MODE OBJECT CODE

3-5

3.2.1.4

3.2.1.5

3-6

Immediate Addressing Mode

The Immediate Addressing mode uses the contents of the byte following the opcode byte as an
8-bit operand. As shown in Table 3-2, the immediate operand (iop) can be a hex constant or a
label, and is indicated by a percent sign preceding the expression. Immediate operands can be
used by RF, PF, and Jump instructions. Refer to Tables 3-8, 3-9, 3-13, and 3-14 for an
illustration of the particular machine instruction formats. In addition, the MOVD instruction
uses immediate operands in two special formats (See Table 3-18). Figure 3-4 illustrates the
simplest case of an instruction using the Immediate Addressing mode.

(PC) —» opcode

(PC+1) —» iop

FIGURE 3-4 — IMMEDIATE ADDRESSING MODE OBJECT CODE
Program Counter Relative Addressing Mode

The Program Counter Relative Addressing mode is used by all jump instructions. As shown in
Table 3-2, the assembly language statement for a jump instruction always includes a target
address (ta) in the form of a label. During assembly, the target address is used by the
microcomputer to calculate a relative address (ra) as follows: ra =ta -pcn, where pcn is the
location of the next instruction and - 128 is less than or equal to ra which is less than or equal to
127. Note that the relative address is also referred to as the offset. The machine instruction
formats for the various types of jump instructions are given in Tables 3-11, 3-12, 3-13, and
3-14. Figure 3-5 illustrates the object code generated by a jump instructon.

(PC) —» opcode
L]
L]
n iop*
b
y d*
t
e
: s*
L]
(PC + n) —p ra

*n optional bytes, depending upon the particular jump instruction

FIGURE 3-5 — PROGRAM COUNTER RELATIVE ADDRESSING MODE OBJECT CODE

3.2.2

3.22.1

3.2.22

(PC) —» opcode

(PC+1) —b Rn | Rn-1 addr MSB

Extended Addressirig Modes

The three Extended Addressing modes generate 16-bit addresses to memory. The 16-bit
address space includes the Register File, the Peripheral File, on-chip program memory, and
off-chip memory. Each of the Extended Addressing modes is described in the sections that
follow.

Direct Memory Addressing Mode

Direct Addressing Mode specifies a 16-bit address that contains the operand. As shown in
Table 3-2, the 16-bit address is preceded by an @ sign and can be written as a hex constant or
as a label. Figure 3-6 shows how the object code produced by an instruction using the Direct
Memory Addressing mode is used to generate a 16-bit effective address.

(PC) opcode

(PC+1) addr MSB

»> 16-BIT EFFECTIVE
ADDRESS

(PC +2) —» addr LSB

FIGURE 3-6 — DIRECT MEMORY ADDRESSING MODE OBJECT CODE

Register File Indirect Addressing Mode

The Register File Indirect Addressing mode uses the contents of a register pair as a 16-bit
effective address. As shown in Table 3-2, the indirect register file address is written as a
register number (Rn) preceded by an asterisk (*), i.e.: *Rn. The LSB of the address is contained
in Rn, and the MSB of the address is contained in the previous register (Rn-1). Note that RO
cannot be specified. Figure 3-7 shows how the object code produced by an instruction using
the Register File Indirect Addressing mode is used to generate a 16-bit effective address.

Rn-2

16-BIT
EFFECTIVE
Rn addr LSB ADDRESS

Rn+1

FIGURE 3-7 — REGISTER FILE INDIRECT ADDRESSING MODE OBJECT CODE

37

3.2.2.3 Indexed Addressing Mode

The Indexed Addressing mode generates a 16-bit address by summing the contents of the B
register with a 16-bit direct memory address. As shown in Table 3-2, the assembly language
statement for the Indexed Addressing mode contains the direct memory address written as a
label preceded by an @ sign, followed by a B in parentheses, i.e.: @LABEL(B). The summing
operation automatically transfers any carries into the MSB. Figure 3-8 illustrates how the
object code produced by an instruction using the Indexed Addressing mode is used to generate
a 16-bit effective address. This mode should not be confused with the move double (MOVD)
instruction’s % VALUE(B) addressing mode; see Section 3.3.6.

Reg B
Index

(PC) —» opcode

(PC + 1) —» addr MSB
16-BIT

-+ EFFECTIVE

ADDRESS

(PC+2) —¥ addr LSB

FIGURE 3-8 — INDEXED ADDRESSING MODE OBJECT CODE
3.3 INSTRUCTIONS

The instruction set is divided into the following types of instructions: Implied Operand, Dual
Operand, Jump, Extended Address, and Miscellaneous instructions. Each instruction type is
defined in the sections that follow. For additional details, refer to the TMS7000 ASSEMBLY
LANGUAGE PROGRAMMER'’S GUIDE (MP 216).

3.3.1 Implied Operand Instructions
Implied Operand instructions are one-byte instructions whose operands, if any, are implied by
the opcode itself. Table 3-3 lists the implied operand instructions in alphabetical order, along

with a brief functional description of each instructon. Table 3-4 shows the machine instruction
format for all Implied Operand instructions.

3-8

TABLE 3-3 — IMPLIED OPERAND INSTRUCTIONS

MNEMONIC MEANING STATUS BITS DESCRIPTION
AFFTECTED
CLRC Clear Carry Bit C/N,Z 0 — C,N,Z, set from A register
DINT Disable Interrupts C,N,Z1 0-1,0-C,0-n0-2
EINT Enable Interrupts C,N.Z,} 1-1,0-C,0—-n0-~2
IDLE -. Idle until interrupt none Suspend until interrupt
LDSP Load Stack Pointer none B register — SP
NOP No operation none PC + 1 -~ PC
POP ST Pop Status from Stack none Top of Stack = ST;SP—1 — SP
PUSH ST Push Status onto Stack none SP + 1— SP; ST— Top of stack
SETC Set Carry C,N,2 1—-C,0—-N,1-2
STSP Store Stack Pointer none SP — B register
Operand address — PC
RETI Return from Interrupt loaded from Stack — PC LSB byte, SP — 1—SP
stack Stack — PC MSB byte, SP — 1—SP
Stack — ST, SP — 1—SP
RETS Return from Subroutine none Stack — PC LSB byte, SP — 1—SP
Stack — PC MSB byte, SP — 1 — SP

TABLE 3-4 - MACHINE INSTRUCTION FORMAT: IMPLIED OPERAND INSTRUCTION

ASSEMBLY LANGUAGE STATEMENT

MACHINE INSTRUCTION FORMAT (BYTE 1)

<inst>

opcode

3.3.2 Single Operand Instructions

Single Operand instructions are either one- or two-byte instructions that use the Single Register
Addressing mode exclusively. Table 3-5 lists the Single Operand instructions in alphabetical
order, along with a brief functonal description of each. Table 3-6 shows the machine instruction
formats for all single operand instructions.

TABLE 3-5 — SINGLE OPERAND INSTRUCTIONS

STATUS BITS
MNEMONIC MEANING AFFTECTED DESCRIPTION
CLR Clear Operand C,N,Z 0 — dest
DEC Decrement C,\N,Z Dest - 1 — dest
DECD Decrement Double C.N,Zz Register pr = 1 — register pr
INC Increment C.N,Z Dest + 1 — dest
INV Invert CN,Z Inverted dest — dest
POP Pop from Stack C,N,Z Top of Stack - dest, SP - 1-—SP
PUSH Push on Stack C.N,Zz SP + 1 — SP, Dest — top of stack
RL Rotate Left C.N,Z bn — bn + 1,b7 - b0, C
RLC Rotate Left through carry CN,z bn — bn + 1,C - b0,b7 - C
RR Rotate Right C.,N,Z bn + 1 — bn,bO0 — b7,C
RRC Rotate Right through carry C.\N,Z bn + 1 —bn, C— b7,b0 - C
SWAP Swap Nibbles C\N,Z b7-b4 «~— b3-b0
XCHB Exchange with Register B C,N,Z B - dest, N,Z set on Dest contents

39

TABLE 3-6 — MACHINE INSTRUCTION FORMATS: SINGLE OPERAND INSTRUCTIONS

ASSEMBLY LANGUAGE STATEMENT MACHINE INSTRUCTION FORMAT
BYTE 1 BYTE 2
<inst> A opcode
<inst> B
<inst> Rd opcode d
3.33 Dual Operand Instructions

Dual Operand instructions are one-, two-, or three-byte instructions that specify one of the
following:

e Both a source and destination register
e Animmediate operand and a destination register

Table 3-7 lists the Dual Operand instructions in alphabetical order, along with a brief description

of each.
TABLE 3-7 — DUAL OPERAND INSTRUCTIONS
MNEMONIC MEANING STATUS BITS DESCRIPTION
AFFECTED
ADC Add with Carry CN,z Source + dest + carry — dest
ADD Add Bytes C.N,Z Source + dest — dest
AND AND bytes C.N,z Source logically ANDed with dest — dest
ANDP AND Peripheral File C.N,Zz Source logically ANDed with PF — PF
CMP Compare C.N.Z Dest — source computed but not stored
DAC Decimal Add w/Carry C.N,Z Source + dest + carry — dest
DsB Decimal Subtract w/Borrow C.N,z Dest - source - 1 + carry — dest
Mov Move C.N,Z Source — dest
Move Move to/from PF C.N,Zz Read or write data from/to Pf
MPY Multiply C.N,Z Source x Dest— A, B
OR OR C.N.Z Source logically ORed with dest — dest
ORP OR Peripheral File C\N,Z Source logically ORed with PF — PF
SBB Subtract with Borrow CN,z Dest - source - 1 + carry — dest
suB Subtract Bytes C.,N,Z Dest - source — dest
XOR Exclusive OR CN,Zz Source exclusively ORed with dest — dest
XORP Exclusive OR PF CN,Z Source exclusively ORed with PF — PF

3.3.3.1 Register File Instruction Types
Table 3-8 lists the machine instruction formats for the Dual Operand instructions which
address the Register File. The instructions which use these formats are:
ADC ADD AND CMP DAC DSB
MOV MPY OR SBB suB XOR
These instructions use either the Register File Addressing mode or a combination of the
Register File and Immediate Addressing modes. Note that the MOV instruction is specifically
illustrated in Table 3-8, because its formats are uniquely defined.
TABLE 3-8 — MACHINE INSTRUCTION FORMATS: REGISTER FILE INSTRUCTIONS
ASSEMBLY LANGUAGE STATE MACHINE INSTRUCTION FORMAT
BYTE 1 BYTE 2 BYTE 3
<inst> B,A opcode
<inst> A,B
<inst> Rs,A opcode s
<inst> Rs,B
<inst> A,Rd
<inst> B,Rd opcode s d
<inst> Rs,Rd
<inst> % <iop>,A .
.) opcode iop
<inst> % <iop>,B
<inst> % <iop>,Rd opcode iop d
MOV A,B
opcode
MOV B,A
MOV A,Rd
MOV B,Rd opcode d
MOV Rs,A
opcode s
MOV Rs,B
3.3.3.2 Peripheral File Instruction Type

Table 3-9 shows the machine instruction formats for the Dual Operand instructions that
address the Peripheral File. The instructions which use these formats are:

ANDP MOVP ORP XORP
These instructions use either the Peripheral File Addressing mode or a combination of the

Peripheral File and Immediate Addressing modes. Note that the MOVP instruction is
specifically illustrated in Table 3-9 because its formats are uniquely defined.

3-11

TABLE 3-9 — MACHINE INSTRUCTION FORMATS: PERIPHERAL FILE INSTRUCTIONS

ASSEMBLY LANGUAGE STATE

MACHINE INSTRUCTION FORMAT

BYTE 1 BYTE 2 BYTE 3
<inst> A, Pn
<inst> B, Pn opcode n
<inst> % <iop>, Pn opcode iop n
MOVP Pn, A
MOVP Pn, B
MOVP A, Pn opcode n
MOVP B, Pn

3.34 Jump Instructions
Jump instructions are two-, three-, and four-byte instructions that use the Program Counter
Relative Addressing mode. These instructions are divided into four format types: Simple
Relative, Single Relative, Dual Relative, and Peripheral Relative. All jump instructions must
specify a target address (ta) in the form of a label in the assembly language statement, so that a
relative address (ra) can be calculated according to the following formula:
ra = ta-pcn
where pcnis the location of the next instruction and -128 is less than or equal to ra which is less
than or equal to 127 (See Section 3.2.1.5). Table 3-10 lists all jump instructions in alphabetical
order, along with a brief description of each instruction.
TABLE 3-10 — JUMP INSTRUCTIONS
MNEMONIC MEANING STATUS BITS DESCRIPTION
AFFECTED
BTJO Bit Test Jump if One C.N,Z If source ANDed with dest # 0, jump
BTJOP Bit Test Jump if One PF C.N,Zz If source ANDed with PF # 0, jump
BTJZ Bit Test Jump if Zero C,N,Z If source ANDed with inverted dest # O, jump
BTJZP Bit Test Jump if Zero PF CN,Zz If source ANDed with inverted PF # O, jump
DJNZ Dec.Reg.Jump Non-Zero none Dest - 1 — dest, if dest # O, jump
JMP Jump Unconditional none PC + offset — PC
JC/JHS Jump if Carry Set/ none IfC = 1, PC + offset — PC
Jump if Higher or Same
JN Jump if Negative none IfN = 1, PC + offset — PC
JNC/JL Jump if No carry/ none If C = 0, PC + offset — PC
Jump if Lower
JNZ/JINE Jump if Not Zero/ none IfZ = 0, PC + offset — PC
Jump if Not Equal
JP Jump if Positive none N =0,Z =0, PC + offset - PC
JrPz Jump if Pos. or Zero none If N = 0, PC + offset — PC
JzZ/JEQ Jump if Zero/ none ¥Z =1, PC + offset — PC
Jump if Equal to

NOTE: Some conditional jump instructions have two names: one indicating the condition of the Status Register bits that are tested and one
indicating the result of a CMP (compare) instruction.

312

3.3.4.1 Simple Relative Instruction Type

Table 3-11 shows the machine instruction format for the Simple Relative Instruction type. This
format requires only the target address (label) in the operand field of the assembly language
statement. The Simple Relative Jump instructions are:

JMP Jump (Unconditional)

JC/JHS Jump If Carry Set/Jump if Higher Or Same
JN Jump If Negative

JNC/JL Jump if No Carry/Jump If Lower

JNZ/JNE Jump If Not Zero/Jump If Not Equal

JP Jump If Positive

JPZ Jump If Positive Or Zero

JZ/JEQ Jump If Zero/Jump If Equal To

TABLE 3-11 — MACHINE INSTRUCTION FORMAT: SIMPLE RELATIVE INSTRUCTIONS

ASSEMBLY LANGUAGE STATEMENT

MACHINE INSTRUCTION FORMAT

BYTE 1

BYTE 2

<inst> <ta>

opcode

ra

3.3.4.2 Single Relative Instruction Type

Table 3-12 shows the machine instruction formats for the Single Relative instruction type.
These formats require a Register File number and a target address (label) in the operand field of
the assembly language statement. DJNZ is the only Single Relative jump instruction.

TABLE 3-12 — MACHINE INSTRUCTION FORMATS: SINGLE RELATIVE INSTRUCTIONS

ASSEMBLY LANGUAGE STATE

MACHINE INSTRUCTION FORMAT

BYTE 1 BYTE 2 BYTE 3
<inst> A, <ta>
) opcode ra
<inst> B, <ta>
<inst> Rn, <ta> opcode n ra

3.3.4.3 Dual Relative Instruction Type

Table 3-13 shows the machine instruction formats for the Dual Relative instruction type. These
formats require a target address (label) and either a Register File number or an immediate
operand in the operand field of the assembly language statement. BTJO and BTJZ are the Dual

Relative Jump instructions.

3-13

TABLE 3-13 — MACHINE INSTRUCTION FORMATS DUAL RELATIVE INSTRUCTIONS

MACHINE INSTRUCTION FORMAT
BYTE 1 BYTE 2 BYTE 3 BYTE 4

ASSEMBLY LANGUAGE STATE

<inst> B, A, <ta> opcode ra

<inst> Rs, A, <ta>
; opcode s ra
<inst> Rs, B, <ta>

<inst> Rs, Rd, <ta> opcode s d

<inst> % <iop>, A, <ta> .
. . opcode iop ra
<inst> % <iop>, B, <ta>

<inst> % <iop>, Rd, ta

opcode iop d ra

3.3.4.4 Peripheral Relative Instruction Type
Table 3-14 shows the machine instruction formats for the Peripheral Relative instruction type.
These formats require a target address (label), a Peripheral File register number, and either an
immediate operand or one of two possible Register File Registers (the A or B register) in the
operand field of the assembly language statement. BTJOP and BTJZP are the Peripheral
Relative jump instructions.
TABLE 3-14 — MACHINE INSTRUCTION FORMATS: PERIPHERAL RELATIVE INSTRUCTIONS
MACHINE INSTRUCTION FORMAT
EMBLY LANGUA
ASSEMB! GUAGE STATE BYTE 1 BYTE 2 BYTE 3 BYTE 4
<inst> A, Pn, <ta> d
<inst> B, Pn, <ta> opcode " @
<inst> % <iop>, Pd, <ta> opcode iop n ra
3.3.5 Extended Address Instructions
Extended Address instructions are two- or three-byte instructions that reference a 16-bit
address in memory. Table 3-15 lists the Extended Address instructions in alphabetical order,
along with a brief description of each instruction.
TABLE 3-15 — EXTENDED ADDRESS INSTRUCTIONS
STATUS BITS
MNEMONIC MEANING DESCRIPTION
AFFECTED
BR Unconditional Branch none Dest — PC
CALL Call Subroutine none SP + 1 — SP, PCMS byte — stack
SP + 1— SP, PCLS byte— stack
CMPA Compare to A Register C,N,Z A - Source computed but not stored
LDA Load A Register C,N,Z Source — A
STA Store A Register C.N,Z A — dest

3-14

Table 3-16 shows the machine instruction formats for the three addressing modes available to
Extended Address instructions: Direct, Register File Indirect, and Indexed Addressing modes.

TABLE 3-16 — MACHINE INSTRUCTION FORMATS: EXTENDED ADDRESS INSTRUCTIONS

MACHINE INSTRUCTION FORMAT
ASSEMBLY LANGUAGE STATE BYTE 1 BYTE 2 BYTE 3
<inst> @ <addr> opcode addr MSB addr LSB
<inst> *Rd opcode d
<inst> @ <addr>(B) opcode addr MSB addr LSB

3.3.6 Miscellaneous Instructions
The MOVD and the twenty-four TRAP instructions are special instructions that do not belong in
any of the previously described catagories of instruction types or addressing modes. These
instructions are shown in Table 3-17 and are discussed in the sections that follow.

TABLE 3-17 — MACHINE INSTRUCTIONS FORMATS: MISCELLANEOUS INSTRUCTIONS

MNEMONIC MEANING STATUS BITS DESCRIPTION
AFFECTED
MOVD Move Double C.N,Zz a. iop — register pr
b. indexed iop — register pr
C. register pr — register pr
TRAP O Trap to Subroutine none SP +1—SP, PCMS byte — stack
A SP + 1 — SP, PCLS byte — stack
A
A Entry vector — PC
TRAP 23

3-15

3.3.6.1

MOVD Instruction

The MOVD instruction moves a two-byte value into a register pair in the Register File. This
destination register pair is specified by a single register number; Rd ,which indicates that the
MSB is contained in Rd-1 and the LSB is contained in Rd. As shown in Table 3-18, the two-byte
value may be a 16-bitimmediate operand, a 16-bit indexed immediate operand, or the contents
of aregister pair in the Register File. These formats are useful for the following tasks:

MOVD %iop,Rd
MOVD %iop(B),Rd
MOVD Rs,Rd

Register pair initialization with an immediate value before
executing an instruction in the Register File Indirect
Addressing mode.

Register pair initialization with an indexed immediate value
before executing an instruction in the Register File Indirect
Addressing mode.

Register pair to register pair transfer in the Register File.

The C, N, and Z status bits are affected by the execution of the MOVD instruction as follows:

C — Set to zero

N — Set to one if MSB is negative; set to zero if MSB is positive or zero

Z — Set to one if MSB is zero; set to zero if MSB is nonzero

Refer to Section 3.4.2 for more details on the status bits.

TABLE 3-18 — MACHINE INSTRUCTION FORMATS: MOVD INSTRUCTION

ASSEMBLY LANGUAGE STATE MACHINE INSTRUCTION FORMAT
BYTE 1 BYTE 2 BYTE 3 BYTE 4
MOVD % iop, Rd opcode iop MSB iop LSB d
MOVD % iop, (B), Rd opcode iop MSB iop LSB d
MOVD Rs, Rd opcode s d

3-16

3.3.6.2

3.4

TRAP Instructions

The TRAP instructions branch to a two-byte location in a reserved section of memory called the
Trap Vector Table. As shown in Figure 3-9, each trap location stores a 16-bit address which
references either the reset function (TRAPO), one of the three interrupt service routines
(TRAP1-INT1, TRAP2-INT2, TRAP3-INT3), or a subroutine (TRAP4-23).

>FFDO TRAP23 Address MSB
>FFD1 TRAP23 Address LSB
>FFEO TRAP15 Address MSB
>FFE1 TRAP15 Address LsB
>FFFA TRAP2 Address MSsB
>FFFB TRAP2 Address LSB
>FFFC TRAP1 Address MSB
>FFFD TRAP1 Address LSB
>FFFE TRAPO Address MSB
>FFFF TRAPO Address LSB

FIGURE 3-9 — THE TRAP VECTOR TABLE

The TRAP instructions are all single-byte instructions, i.e., the machine instruction format
requires only the opcode byte. No status bits are affected by the execution of these
instructions.

TRAPs 0-23 push the contents of the Program Counter onto the stack (PC MSB followed by PC
LSB) before executing the subroutine stored at the address in the Trap Vector Table. See
Section 3.5.50 and Section 6.3.3 for more information.

CUSTOM MICROCODING

For applications requiring unusually high performance, or for customers wishing to tailor the
instruction set to their application program, the TMS7000 instruction set is implemented with
160 micro-instructions of 45 bits each with which Texas Instruments is prepared to support
limited customer re-microcoding. More details of custom microcoding can be found in Section
5 of this book.

317

3-18

Certain instructions in the instruction set may be removed and replaced with a unique
customer-defined instruction, others may not. The instructions which may not be altered
comprise the core instruction set; those which may be altered or removed are classified as
non-core instructions. A listing of the core (reserved) and non-core (available for microcoding)
instructions is provided in Tables 3-19 and 3-20 respectively.

TABLE 3-19 — TMS7000 CORE (RESERVED) INSTRUCTIONS

MNEMONIC OP CODE MNEMONIC OP CODE MNEMONIC OP CODE
NOP 00 OR Rn,A 14 BTJO Rn,A 16
IDLE 01 OR %n,A 24 BTJO %n,A 26
MOV Rn,A 12 OR Rn,B 34 BTJO Rn,B 36
MOV %n,A 22 OR Rn,Rn 44 B8TJO Rn,Rn 46
MOV Rn,B 32 OR %n,B 54 BTJO %n,B 56
MOV Rn,Rn 42 ORB,A 64 BTJO B.A 66
MOV %n.B 52 OR %n,Rn 74 BTJO %n,Rn 76
MOV B,A 62
MOV %n,Rn 72 XOR Rn,A 15 BTJZ Rn,A 17
MOV A,B co XOR %n,A 25 BTJZ %n,A 27
MOV A,Rn DO XOR Rn,B 35 BTJZ Rn,B 37
MOV B.Rn D1 XOR Rn,Rn 45 BTJZ Rn,Rn 47
XOR %n,B 55 BTJZ %n,B 57
AND Rn,A 13 XOR B,A 65 BTJZ B.A 67
AND %n,A 23 XOR %n,Rn 75 BTJZ %n,Rn 77
AND Rn,B 33
AND Rn,Rn 43 TSTA/CLRC BO POPST 08
AND %n,B 53 TSTB c1 PUSHST OE
AND B,A 63 SETC 07 LDSP oD
AND %n,Rn 73 RETS OA STSP 09
DINT 06 RETI 0B EINT 05
ADD Rn,A 18 ADC Rn,A 19 SUB Rn,A 1A
ADD %n,A 28 ADC %n,A 29 SUB %n,A 2A
ADD Rn,B 38 ADC Rn,B 39 SUB Rn,B 3A
ADD Rn,Rn 48 ADC Rn,Rn 49 SUB Rn,Rn 4A
ADD %n,B 58 ADC %n,B 59 SUB %n,B 5A
ADD B,A 68 ADC B,A 69 SUB B,A 6A
ADD %n,Rn 78 ADC %n,Rn 79 SUB %n,Rn 7A
SBB Rn,A 1B LDA @n 8A STA @n 8B
SBB %n,A 2B LDA *Rn 9A STA *Rn 9B
SBB Rn,B 3B LDA @n(B) AA STA @n(B) AB
SBB Rn,Rn 48
SBB %n,B 58 BR @n 8C CALL @n 8E
SBB B,A 6B BR *Rn 9C CALL *Rn 9E
SBB %n.Rn 78 BR @n(B) AC CALL @n(B) AE
CMP Rn,A 10 DEC A B2 INC A B3
CMP %n,A 2D DEC B c2 INC B Cc3
CMP Rn,B 3D DEC Rn D2 INC Rn D3
CMP Rn,Rn 4D
CMP %n,B 5D INV A B4 CLR A B5
CMP B,A 6D INV B (o3 CLR B Cs
CMP %n,Rn 70 INV Rn D4 CLR Rn D5

TABLE 3-19 — TMS7000 CORE (RESERVED) INSTRUCTIONS (CONTINUED)

MNEMONIC OP CODE MNEMONIC OP CODE MNEMONIC OP CODE
PUSH A B8 POP A B9 DJNZ A BA
PUSH B cs POP B c9 DJNZ B CA
PUSH Rn D8 POP Rn D9 DJNZ Rn DA
RR A BC RRC A 8D RL A BE
RR B cc RRC B cD RLB CE
RR Rn DbC RRC Rn oD RL Rn DE
TRAP 7 F8 RLC A BF JmpP EO
TRAP 6 F9 RLC B CF IN/ULT El
TRAP 5 FA RLC Rn DF JZ/JEQ E2
TRAP 4 FB JC/JHS E3
TRAP 3 FC JP/JGT E4
TRAP 2 FD JPZ/JGE ES
TRAP 1 FE JNZ/INE E6
TRAP O FF JINC/JL E7

3-19

TABLE 3-20 — TMS7000 NON-CORE (AVAILABLE FOR MICROCODE) INSTRUCTIONS

MNEMONIC OP CODE MNEMONIC OP CODE
MPY Rn,A 1Cc TRAP 23 E8
MPY %n,A 2C TRAP 22 E9
MPY Rn,B 3C TRAP 21 EA
MPY Rn,Rn 4C TRAP 20 EB
MPY %n,B 5C TRAP 19 EC
MPY B,A 6C TRAP 18 ED
MPY %n,Rn 7C TRAP 17 EE
TRAP 16 FF
DAC Rn,A 1E TRAP 15 FO
DAC %n,A 2E TRAP 14 F1
DAC Rn,B 3E TRAP 13 F2
DAC Rn,Rn 4E TRAP 12 F3
DAC %n,B 5E TRAP 11 F4
DAC B.A 6E TRAP 10 F5
DAC %n,Rn 7E TRAP 9 F6
TRAP 8 F7
DSB Rn,A 1F ANDP A,Pn 83
DSB %n,A 2F ANDP B.Pn 93
DSB Rn,B 3F ANDP %n,Pn A3
DSB Rn,Rn 4F
DSB %n,B 5F ORP A,Pn 84
DSB B,A 6F ORP B,Pn 94
DSB %n.Rn 7F ORP %n,Pn A4
MOVD %n,Rn 88 XORP A,Pn 85
MOVD Rn,Rn 98 XORP B,Pn 95
MOVD %n(B),Rn A8 XORP %n,Pn A5
DECD A BB BTJOP A.Pn 86
DECD B cB BTJOP B,Pn 96
DECD Rn oB BTJOP %n,Pn A6
SWAP A B7 BTJZP A,Pn 87
SWAP B Cc7 BTJZP B,Pn 97
SWAP Rn D7 BTJZP %n,Pn A7
CMPA @n 8D MOVP A,Pn 82
CMPA *Rn 9D MOVP B,Pn 92
CMPA @n(B) AD MOVP %n,Pn A2
XCHB A B6 MOVP Pn,A 80
XCHB B cé
XCHB Rn D6 MOVP Pn,B 91
3.5 INSTRUCTION DESCRIPTIONS

The assembler for the TMS7000 family will accept these instructions in the indicated
Assembly Language format. The byte count for each instruction may be determined from its
instruction type and its operands. Refer to Appexdix A for specification for opcode assignment
and instruction timing information.

The instruction descriptions are presented in alphabetic order. The discussion of each
instruction includes mnemonic, syntax, instruction type, example, status bits affected,and
some useful notes. All instructions may have optional labels before the mnemonic and
comments after the operands. Label, mnemonics, operand field and comments must be
separated by a space.

3-20

3.5.1

All of the logical instructions, AND, OR, XOR, ORP ... follow the tables below. These functions
operate on the eight bits in the source and their corresponding bits in the destination. The AND
function is useful in clearing bits, the OR function can set bits to *1” and the XOR function can
toggle the bits from ‘1’ to ‘0" or from ‘0" to ‘1".

LOGICAL FUNCTIONS
— AND — — OR — — XOR —
Src Dst Rst Src Dst Rst Src Dst Rst
0 0 (¢} 0 0 0 0 0 (o}
0 1 0 0 1 1 (o] 1 1
1 0 (] 1 0] 1 1] 1
1 1 1 1 1 1 1 1 6]
Src = source bit
Dst = destination bit
Rst = result bit
ADC Add with Carry ADC
SYNTAX: ADC <s>,<d>
EXECUTION RESULTS: (s) + (d) + C —> (d)
EXAMPLE: LABEL ADC R66,R117 Adds the contents of register 66 to
register 117 plus the carry.
TYPE: Dual Register
STATUS C —setto’1’ oncarry-out of (s)+(d) +C
BITS: Z —setonresult

N —seton result

ADC with an immediate operand of zero value is equivalent to a conditional increment of the
destination operand. ADC may also be used to implement multi-precision addition of signed or
unsigned integers. For example, the 16-bit integer in register pair (R2,R3) may be added to the
16-bit integer in (A,B) as follows:

ADD R3,B Low order bytes added
ADC R2,A High order bytes added

3-21

3.56.2

3.5.3

3-22

ADD Add ADD
SYNTAX: ADD <s>,<d>

EXECUTION RESULTS: (s) + (d) —> (d)

EXAMPLE: LABEL ADD A,B Adds the contents of the A and B
register and stores the results in B

TYPE: Dual Register

STATUS C —1’ on carry-out of (s) + (d)

BITS: Z —setonresult

N —setonresult
ADD is used to add two bytes, and may be used for signed two’s complement or unsigned
addition.
AND And AND
SYNTAX: AND <s>,<d>

EXECUTION RESULTS: (s) .AND. (d) = (d)

EXAMPLE: AND % >1,R12 Clear all bits in R12 except bit O
TYPE: Dual Register

STATUS C«—0

BITS: N —set on result

Z —setonresult

AND is used to perform a logical AND of the two operands. Each bit of the 8-bit result follows
the truth table which is at the beginning of this section. AND is useful in clearing or resetting
bits. If a bit needs to be cleared in the destination, then a ‘O’ is put at that bit location in the
source. A ‘1’ in the source will cause the bit in the destination to remain the same.

3.54

3.56.5

ANDP And Peripheral Register ANDP
SYNTAX: ANDP <s>,<d>

EXECUTION RESULTS: (s) .AND. (p) = (p)

EXAMPLE: CLRBIT ANDP % >DFP6 Clear bit 5 of the B port
TYPE: Dual Peripheral File

STATUS C—20

BITS : N — set on result

Z — setonresult
ANDP may be used to clear one or more bits in the peripheral file. Thus, it may be used to reset
an individual output line to zero. This may be done with an ANDP instruction where the source
is an immediate operand that serves as a mask field. The example above shows how bit 5 of
the B Port (P6) is cleared. The only valid source operands are A, B and %iop.
BTJO Bit Test and Jump if One BTJO
SYNTAX: BTJO <s>,<d>, <offset>
EXECUTION RESULTS: If (s).AND.(D) <> 0, then PC + (offset) —> PC

EXAMPLE: BITSET BTJO % >14,R4,ISSET Jump if R4 (bit 2) or
R4 (bit4)isa’1’

TYPE: Dual Relative
STATUS C<«—0
BITS: N — set on (s).AND.(d)

Z — seton (s).AND.(d)

Use the BTJO instruction to test for at least one bit which has a corresponding ‘1’ bit in each
operand. For example, the source operand can be used as a bit mask to test for one or more ‘1’
bits in the destination address. The operands are not changed by this instruction.

3-23

3.5.6

3.5.7

3-24

BTJOP Bit Test and Jump if One Peripheral
SYNTAX: BTJOP <s>,<p>,<offset>
EXECUTION RESULTS: If (s).AND.(p) <> O, then PC + (offset) —> PC

EXAMPLE: LABEL BTJOP % >81,P4, THERE Jump if Port A(bitO) or
Port A(bit7)is ‘1’

TYPE: Peripheral-Relative
STATUS C«0
BITS: N — seton (s).AND.(p)

Z — seton {(s).AND.(p)

BTJOP

Use the BTJOP instruction to test for at least one bit position which has a corresponding ‘1’ in
each operand. For example, the source operand can be used as a bit mask to test for at least
one ‘1’ bit in the destination peripheral file register. The example above tests bit O and bit 7 of

the input A port, and jumps if eitherisa ‘1’.
BTJZ Bit Test and Jump if Zero
SYNTAX: BTJZ <s>,<d>,<offset>

EXECUTION RESULTS: if (s).AND.(NOT d) <> O, then PC + (offset) —» PC

EXAMPLE: ISZERO BTJZ A,R23,ZERO If any ‘1’ bits in A correspond to

to ‘O’ bits in R23 then jump

TYPE: Dual Relative
STATUS C«—0
BITS: N — seton (s).AND.(NOTd)

Z — seton (s).AND.(NOTd)

BTJZ

Use the BTJZ instruction to test for at least one O bit in the destination operand which has a
corresponding ‘1’ bit in the source operand. The operands are not changed by the instruction.

3.5.8

3.5.9

BTJZP Bit Test and Jump if Zero Peripheral BTJZP
SYNTAX: BTJZP <s>,<d>,<offset>

EXECUTION RESULTS: if (s).AND.(NOT d) < > O, then PC + (offset) —» PC

EXAMPLE: LABEL BTJZP % >21,P4, THERE Jump if P4(bitO) or
P4(bit5)is ‘0’

TYPE: Peripheral Relative

STATUS C«—20

BITS: N — seton (s).AND.(NOTd)

Z — seton (s). AND.(NOTd)

Use the BTJZP instruction to test for at least one bit position which has a ‘1’ in the source and
an ‘0’ in the peripheral file register. For example, the source operand can be used as a bit mask
to test for zero bits in the destination peripheral file register. The example above tests bit O and
bit 5 of the input A port, and jumps if either is a ‘0’. The jump is calculated starting from the
opcode of the instruction just after the BTJZP. The operands are unchanged by this instruction.
BR Branch BR
SYNTAX: BR <d>

EXECUTION RESULTS: (d) = PC

EXAMPLES: LABEL BR @THERE Direct addressing
BR @TABLE(B) Indexed addressing
BR *R14 Indirect addressing

TYPE: Extended Address

STATUS

BITS: Not changed

BR may be used to branch to ANY location in the the 64K memory space including the Register
space. This extended address type instruction supports three different modes. The powerful
concept of computed GOTO's is supported by the BR *Rn instruction. An indexed branch
instruction of the form BR @TABLE(B) is an extremely efficient way of executing one of several
actions on the basis of some control input. This is similar to the CASE statement of Pascal and
other high-level languages. For example, suppose register R3 contains a control value. The
program can branch to label ACTIONO if R3=0, ACTION1if R3=1, etc, for up to 128 different
actions. This technique may also be used to transfer control on character inputs, error codes,
etc. See section 6.3.5 for examples.

3-25

3.5.10 CALL Call CALL

SYNTAX: CALL <d>

EXECUTION RESULTS: SP + 1 - SP
PC MS Byte —> stack
SP +1 —> SP
PC LS Byte —> stack

operand address —> PC

EXAMPLES: LABEL1 CALL @LABEL4 Direct addressing
CALL @LABEL5(B) Indexed addressing

CALL *R12 Indirect addressing
TYPE: Extended Address
STATUS
BITS: Not changed

CALL is used to invoke a subroutine. The PUSH and POP instructions can be used to save,
pass, or restore status or register values. The extended addressing modes of the CALL
instruction allow powerful transfer of control functions.

3.5.11 CLR Clear CLR
SYNTAX: CLR <d>
EXECUTION RESULTS: 0 — (d)

EXAMPLE: ZEROIT CLRB

TYPE: Single Register
STATUS C«—0
BITS: N «— 0

Z «— 1

CLR is used to clear or initialize any file register including the A and B registers.

3-26

3.6.12

3.56.13

3.5.14

CLRC Clear the Carry bit CLRC
SYNTAX: CLRC

EXECUTION RESULTS: status bits set

EXAMPLE: LABEL CLRC

TYPE: Implied Operand

STATUS C«—0

BITS: N — set on vaiue of A register

Z — set on value of A register

CLRC is used to clear the carry flag if required before an arithmetic or rotate instruction. Note
that the logical and move instructions typically clear the Status carry bit. The CLRC opcode is
equivalent to the TSTA opcode.

CMP Compare cmpP
SYNTAX: CMP <s>,<d>

EXECUTION RESULTS: (d) - (s) computed

EXAMPLE: LABEL CMP R13,R89
TYPE: Dual Register

STATUS C —'1"if (d) is logically greater than
BITS: or equal to (s)

N — Sign of result
Z —'1"if (d)is equal to (s)

CMP is used to compare the destination operand to the source operand. For a complete
discussion of this instruction see 6.3.1.1.

CMPA Compare Accumulator Extended CMPA
SYNTAX: CMPA <s>

EXECUTION RESULTS: (A) - (s) computed but not stored

EXAMPLE: LABEL CMPA @TABLE2 Direct addressing
CMPA @TABLE(B) Indexed
CMPA *R123 Indirect
TYPE: Extended Address
STATUS C —'1"if (A)is logically greater than or
BITS: equal to (s)
N —‘1"if (A) is arithmetically less than (s)

Z —'1'if (A)is equal to (s)

CMPA may be used to compare a long-addressed operand (e.g., via direct, indirect, or indexed
addressing modes) to the A register. It is especially useful in table lookup programs in which the
table is stored either in extended memory or in program ROM. The status bits are set exactly as
if register A were the destination (d) and the addressed byte the source (s).

3-27

3.6.15

3.5.16

3-28

DAC Decimal Add With Carry DAC
SYNTAX: DAC <s>,<d>

EXECUTION RESULTS: (s) + (d) + C—>(d) Decimal

EXAMPLE: LABEL DAC % >24,A Add the packed BCD value 24 to
Accum.

TYPE: Dual Register

STATUS C —1'ifvalueof (s) + (d) + C > = 100

BITS: N —setonresult

Z —setonresult

DAC is used to add bytes in binary-coded decimal (BCD) form. Each byte is assumed to contain
two BCD digits. Operation of DAC is undefined for non-BCD operands. DAC with an immediate
operand of zero value is equivalent to a conditional increment of the destination operand. The
DAC instruction automatically performs a decimal adjust on the binary sum of (s) + (d) + C. The
carry bit is added to facilitate adding multi-byte BCD strings, and so the carry bit must be
cleared before execution of the first DAC instruction.

DEC Decrement DEC
SYNTAX: DEC <d>

EXECUTION RESULTS: (d)-1—(d)

EXAMPLE: LABEL DEC R102

TYPE: Single Register

STATUS C -0’ if (d) decrements from >00 to >FF;
BITS: ‘1’ otherwise.

N —setonresult
Z —setonresult

The DEC instruction is used to subtract a value of ‘1’ from any addressable operand. The DEC
instruction is also useful in counting and addressing byte arrays.

3.6.17

3.5.18

DECD Decrement Double DECD

SYNTAX: DECD <mp>

TYPE: Single Register

EXAMPLE: LABEL DECD R51 Decrement (R50,R51) register pair
R51 = LSB

EXECUTION RESULTS: (rp) - 1—>(rp)

STATUS C -0’ if most significant byte decrements from

BITS: >00 to >FF. Otherwise, C = ‘1".
N — set on most significant byte of result
Z —set on most significant byte of result

DECD may be used to decrement 16-bit indirect addresses stored in the register file. Tables
longer than 256 bytes may be scanned using this instruction.

DINT Disable Interrupts DINT
SYNTAX: DINT
EXECUTION RESULTS: 0~ interrupt enable status bit

EXAMPLE: LABEL DINT

TYPE: Implied Operand
STATUS | «—0
BITS: C+0

N «O0

Z «—0

DINT is used to turn off all interrupts simultaneously. Since the interrupt enable flag is stored in
the status register, the POP ST, RETI or LDSP instructions may reenable interrupts even though
a DINT instruction has been executed. During the interrupt service, the interrupt enable bit is
automatically cleared after the old status register value has been pushed onto the stack.

3-29

3.5.19

3.5.20

3-30

DJNZ Decrement Register And Jump If Not-Zero DJNZ
SYNTAX: DJNZ <d>, <offset>

EXECUTION RESULTS: (d)-1—>(d); if (d) <> O, then PC + (offset) — PC

EXAMPLE: LABEL DJNZ R15,THERE
TYPE: Single-Relative

STATUS

BITS: Not changed

The DJNZ instruction is used for looping control. Combines the DEC and the JNZ instruction
together to give a more compact and faster instruction: This instruction does not change any of
the status bits.

DSB Decimal Subtract With Borrow DSB
SYNTAX: DSB <s>,<d>

EXECUTION RESULTS: (d) - (s)-1 + C—>(d) Decimal

EXAMPLE: LABEL DSB R15,R76

TYPE: Dual Register

STATUS C —1" no borrow required, ‘O’ if borrow required
BITS: N —setonresult

Z —setonresult

DSB is used for multiprecision decimal BCD subtraction. A DSB instruction with an immediate
operand of zero value is equivalent to a conditional decrement of the destination operand. The
carry status bit functions as a borrow bit, so if no borrow in is required, the carry bit should be
set to ‘1’. This can be accomplished by executing the SETC instruction.

3.56.21

3.5.22

EINT Enable Interrupts EINT
SYNTAX: EINT

EXECUTION RESULTS: 1= interrupt enable

EXAMPLE: LABEL EINT
TYPE: Implied Operand
STATUS | «—1
BITS: C+1

N «1

Z «—1

EINT is used to turn on all enabled interrupts simultaneously. Since the interrupt enable flag is
stored in the status register, the POP ST, LDST, and RETI instructions may disable interrupts
even though a EINT instruction has been executed. During the interrupt service, the interrupt
enable bit is automatically cleared after the old status register value has been pushed onto the
stack. Thus, the EINT instruction must be included inside the interrupt service routine to permit
nested or multilevel interrupts.

IDLE Idle until Interrupt IDLE
SYNTAX: IDLE

EXECUTION RESULTS: pc—> pc until interrupt
pc + 1— pc after return from interrupt

EXAMPLE: LABEL IDLE
TYPE: Implied Operand
STATUS

BITS: Not changed

IDLE is used to allow the program to suspend operation until either an interrupt or reset occurs.
It is the programmer’s responsibility to assure that the interrupt enable status bit (and individual
interrupt enable bits in the 1/0 control register) are set before executing the IDLE instruction.
Upon return from an interrupt, control passes to the instruction following the IDLE instruction.

3-31

3.5.23

3.5.24

3-32

INC Increment INC
SYNTAX: INC <d>

EXECUTION RESULTS: (d) + 1— (d)

EXAMPLE: LABEL INC A

TYPE: Single Register

STATUS C —1'if (d) incremented from >FF to >00;
BITS: ‘O’ otherwise.

N —seton result
Z —setonresult

INC is used to increment the value of any register. It is useful in incrementing counters into
tables.

INV Invert INV
SYNTAX: INV <d>

EXECUTION RESULTS: NOT (d) — (d)

EXAMPLE: LABEL INV A
TYPE: Single Register

STATUS C«0

BITS: N — set onresult

Z — setonresult

INV performs a logical or one’s complement of the operand. A two's complement of the
operand can be made by following the INV instruction with an increment (INC). A one's
complement reverses the value of every bit in the destination.

3.5.25 JMP Jump unconditional JMP
SYNTAX: JMP <offset>

EXECUTION RESULTS: PC + (offset)=—>PC The PC is taken from the instruction

after the JMP
EXAMPLE: LABEL JMP THERE
TYPE: Simple Relative
STATUS
BITS: Not changed

Jump unconditionally to the address specified in the operand. The second byte of the JMP
instruction is loaded with the 8-bit relative address of the operand. The operand address must
therefore be within — 128 to + 127 bytes of the location of the instruction following the JMP
instruction. The assembler will indicate an error if the target address is beyond —128 to + 127
bytes from the next instruction. For a longer jump the BR (branch) instruction can be used.

3.5.26 J<cnd> Jump On Condition J<cnd>
SYNTAX: J<cnd> <offset>

EXECUTION RESULTS: If tested condition is true, PC + offset—>PC

EXAMPLES: LABEL JNC THERE
LABEL JP HERE

TYPE: Simple Relative

STATUS

BITS: Not affected

3-33

3.5.27

3-34

TABLE 3-21 — CONDITIONAL JUMP INSTRUCTIONS

CONDITION FOR JUMP
INSTRUCTION MNEMONIC (STATUS BIT VALUES)

CARRY NEGATIVE ZERO
Jump If Carry JC 1 X X
Jump If Equal JEQ X X 1
Jump If Higher Or Same JHS 1 X X
Jump If Lower JL (o] X X
Jump If Negative JN X 1 X
Jump If No Carry JNC (o] X X
Jump If Not Equal JNE X X o]
Jump If Non-zero JNZ X X (o]
Jump If Positive JP X (] (o]
Jump If Positive Or Zero JPZ X (o] X
Jump If Zero Jz X X 1

The J<cnd > instructions may be used after a CMP instruction to branch according to the
relative values of the operands tested. After MOV, MOVP, LDA, or STA operations, a JZ or JNZ
may be used to test if the value moved was equal to zero. JN and JPZ may be used in this case
to test the sign bit of the value moved. For a more complete description of the Jump

instructions see 6.3.1.1.

LDA Load A register

SYNTAX: LDA <s>

EXECUTION RESULTS: (s)=—> Addr

EXAMPLES: LABEL1 LDA @LABEL4
LABEL2 LDA @LABEL5(B)
LABEL3 LDA *R13

TYPE: Extended Address

STATUS C«0

BITS: N — set on value loaded

Z — seton value loaded

Direct
Indexed
Indirect

LDA

The LDA instruction is used to read values stored anywhere in the full 64K memory space. The
direct addressing mode provides an efficient means of directly accessing a variable in memory.
Indexed addressing gives an efficient table look-up capability for most applications. Indirect
addressing allows the use of very large look-up tables and the use of multiple memory pointers
since any pair of registers can be used as the pointer. The DJNZ (Decrement and Jump if
Non-Zero) instruction can be used with either indexed or indirect addressing to create fast and
efficient program loops or table searches.

3.5.28

3.56.29

LDSP Load Stack Pointer
SYNTAX: LDSP

EXECUTION RESULTS: (B)— SP

EXAMPLE: LABEL LDSP
TYPE: Implied Operand
STATUS

BITS: Not changed

LDSP

Copy the contents of the B register to the stack pointer register. LDSP is used to initialize the

stack pointer.

MOV Move MoV

SYNTAX: MoV <s>,<d>

TYPE: Dual Register

EXECUTION RESULTS: (s)=—>(d)

EXAMPLES: LABEL1 MoV A,B Move the contents of A reg. to B reg.
LABEL2 MOV R32,R105 Move the contents of R32 to R105
LABEL3 MOV %10,R3 Move the value 10 to R3

STATUS C <0

BITS: N — set on value loaded

Z — seton value loaded

MOV is used to transfer values within the register space. Immediate values may be loaded into
registers directly from the instruction. The fact that the A or B register is an operand isimplied in

the MOV opcode, resulting in shorter and quicker moves from the A or B register.

3-35

3.5.30

3.5.31

3-36

MOVD Move Double MOVD
SYNTAX: MOVD <s>,<d>
EXECUTION RESULTS: (rp)=—>(rp)

EXAMPLE: LABEL MOVD % >1234,R3 Load Register Pair R2,R3 with >1234
MOVD R5,R3 Copy R4,R5to R2,R3 R5,R3 = LSB
MOVD %TAB(B),R3 Copy indexed address to R2,R3

TYPE: Miscellaneous

STATUS C+«o0
BITS: N — set on most significant byte moved
Z — set on most significant byte moved

MOVD moves a two-byte value to the register pair indicated by the destination register number.
The destination is the second operand of the instruction and it points to the LSB of the
destination register pair. The source may be a 16-bit constant, another register pair, or an
indexed address. For the latter case, the source must be of the form ”%ADDR(B)” where
ADDR is a 16-bit constant or address. This 16-bit value is added (via 16-bit addition) to the
contents of the B register, and the result placed in the destination register pair. This will store an
indexed address into a register pair, for use later in indirect addressing mode.

MoOvP Move To/From Peripheral File MovP
SYNTAX: MOVP <s>,<d>

EXECUTION RESULTS: <§>— <d>

EXAMPLE: SETIMR MOVP A,P2 Setup timer value
RDPORT MOVP P4,B Read Port A data

TYPE: Peripheral File

STATUS C+«0

BITS: N — set on value moved

Z — seton value moved

MOVP is used to transfer values to and from the peripheral file. This may be used to input or
output 8-bit quantities on the I/O ports. The peripheral file also contains control registers for the
interrupt lines, the I/O ports, and the timer controls. The operands supported by this instruction
are A, B and %iop.

During peripheral file instructions, a peripheral file port is read. The read can include out-
put operations each as ‘'MOV A,P6’. If this read is undesirable because of hardware con-
figuration, a STA (Store A) instruction with the memory-mapped address of the peripheral
register can be used.

3.5.32

3.56.33

MPY Multiply MPY

SYNTAX: MPY <s>,<d>

EXECUTION RESULTS: (s) X (d)=—> (A,B) Result always stored in A,B
EXAMPLE: LABEL MPY R3,A Multiply R3 and A

LABEL2 MPY %32,B Shift B register 5 places left
TYPE: Dual Register
STATUS C«0
BITS: N — set on most significant byte of results (A register)

Z — set on most significant byte of results (A register)
MPY performs an 8-bit multiply for a general source and destination operand. The 16-bit resuit
is placed in the ‘A, B’ register pair with the most significant byte in A. Multiplying by a power of
two is a convenient means of performing double-byte shifts. If a double byte shift is three
places or less, then it may be faster to use RLC or RRC instead of multiply. If a single byte needs
shifting then it is almost always faster to use RLC or RRC.
NOP No Operation NOP
SYNTAX: NOP
EXECUTION RESULTS: PC + 1—PC

EXAMPLE: LABEL NOP

TYPE: Implied Operand
STATUS
BITS: Not changed

NOP is useful as a pad instruction during program development, to ”patch out” unwanted or
erroneous instructions or to leave room for code changes during development. It is also useful
in software timing loops.

3-37

3.5.34

3.5.35

3-38

OR or OR
SYNTAX: OR <s>,<d>
EXECUTION RESULTS: (s) .OR. (d)— (d)

EXAMPLE: LABEL OR A,R12 Or the A register with R12, Store in R12
SETBIT OR % >0FA Set lower nibble of A to ‘1’s, leave
upper nibble unchanged

TYPE: Dual Register
STATUS C«0

BITS: N — setonresult
Z — setonresult

ORis used to perform a logical OR of the two operands. Each bit of the 8-bit result follows the
truth table at the beginning of this section. The OR operation is used to set bits in a register. If a
register needs a ‘1’ in the destination thena ‘1’ is placed in the corresponding bit location in the
source operand.

ORP OR Peripheral File Register ORP
SYNTAX: ORP <s>,<d>

EXECUTION RESULTS: (s) .OR. (d)— (d)

EXAMPLE: LABEL ORP AP12
TYPE: Peripheral File

STATUS C<«0

BITS: N — seton result

Z — setonresult

ORP is used to perform a logical OR of the source operand with a peripheral file location, and
write the result back to the peripheral file. This may be used to set an individual I/0O bit of a
peripheral register. Since the peripheral file is read before it is ORed, it may not work with some
peripheral locations which have different function when reading then when writing.

3.5.36

3.5.37

POP POP From Stack POP

SYNTAX: POP <d>

EXECUTION RESULTS: Stacktop = (d) Move value then decrement SP
SP-1 -—> SP
EXAMPLES: GETIT POP R32
PUTBCK POP ST
TYPE: Single Register
“POP ST” Special, see below
STATUS C<«0
BITS: N — set on value POPed

Z — set on value POPed

The data stack can be used to save or to pass values, especially during subroutines and
interrupt service routines. The POP instruction pulls a value from the stack. The status register
may be replaced with the contents on the stack by the statement: POP ST. This one-byte
instruction is usually executed in conjunction with a previously performed "PUSH ST”
instruction.

PUSH Push On Stack PUSH
SYNTAX: PUSH <d>

EXECUTION RESULTS: SP + 1—> SP; Increment SP then move value
(d) —> (stack top)

EXAMPLES: STORE1 PUSHA

SAVEST PUSH ST
TYPE: Single Register

“PUSH ST” Special, see below
STATUS C «0
BITS: N — set on value PUSHed

Z — seton value PUSHed

The data stack is used to save or pass values, especially during subroutines and interrupt
service routines. The PUSH instruction places a value on the stack. The Status register may be
pushed on the stack with the statement: PUSH ST. This one-byte instruction is usually
executed in conjunction with a subsequently performed “"POP ST” instruction. The status
register is unaffected.

3-39

3.5.38

3.56.39

3-40

RETI
SYNTAX: RETI

EXECUTION RESULTS: Stack
SP-1
Stack
SP-1
Stack
SP-1

EXAMPLE: LABEL RETI

TYPE: Implied Operand

STATUS Status Register

BITS: is loaded from
the stack

Retumn From Interrupt RETI

RERRY

PC LS Byte
SP

PC MS Byte
SP

ST

SP

RETI is typically the last instruction in an interrupt service routine. RETI restores the status
register to its state immediately before the interrupt occurred and branches back to the
program at the instruction boundary where the interrupt occurred. The A and B registers, if
used, must be restored to original values before the RETI instruction.

RETS

SYNTAX: RETS

EXECUTION RESULTS: Stack
SP-1
Stack
SP-1

EXAMPLE: LABEL RETS

TYPE: Implied Operand
STATUS
BITS: Not changed

i

Return From Subroutine RETS

PC LS Byte
SP

PC MS Byte
SP

RETS is typically the last instruction in a subroutine. RETS results in a branch to the location
immediately following the subroutine call instruction. In the called subroutine there must be an
equal number of POPs and PUSHes so that the stack is pointing to the return address and not

some other data.

3.56.40

3.5.41

RL Rotate Left RL
SYNTAX: RL <d>

EXECUTION RESULTS: Bit(n) =—> Bitin+1)
Bit(7) ~—> Bit(0) and Carry

EXAMPLE: LABEL RL R102
TYPE: Single Register

STATUS C —set to bit 7 of the original operand
BITS: N —set on result

Z —setonresult

C msb 6 5 4 3 2 1 Isb |e

An example of the RL instruction is: If the B register contains the value >93, then the RL
instruction changes the contents of B to >27 and sets the carry status bit.

RLC Rotate Left Through Carry RLC
SYNTAX: RLC <d>
EXECUTION RESULTS: Bit(n) —> Bit(n+1)

Carry —> Bit(0)
Bit(7) —> Carry

EXAMPLE: LABEL RLC R72
TYPE: Single Register

STATUS C set to bit 7 of the original operand
BITS: N — setonresult

Z — setonresult

- C < msb 6 5 4 3 2 1 Isb

An example of the RLC instruction is: if the B register contains the value >93 and the carry
status bit is a zero, then the RLC instruction changes the operand value to >26 and carry to
one. Rotating left effectively multiplies the value by 2. Using multiple rotates, any power of 2 (
2, 4, 8, 16...) can be achieved. This type of multiply is usually faster than the MPY (multiply)
instruction. This instruction is also useful in rotates where a value is contained in more than one
byte such as an address or in multiplying a large multibyte number by 2. Care must be taken to
assure that the carry is at the proper value. The SETC or CLRC instructions may be use to setup
the correct value.

3-41

3.5.42

3.5.43

3-42

RR Rotate Right RR
SYNTAX: RR <d>

EXECUTION RESULTS: +1) —> Bit(n)
Bit(0) = Bit(7) and carry

EXAMPLE: LABEL RR A

TYPE: Single Register

STATUS C —set to bit O of the original value
BITS N —seton result

Z —seton result

C »— msb | 6 5 4 3 2 1 Isb >

An example of the RR instruction is: If the B register contains the value >93, then the "RRB”
instruction changes the contents of Bto >C9 and sets the carry status bit.

RRC Rotate Right Through Carry RRC
SYNTAX: RRC <d>

EXECUTION RESULTS: Bit(n+ 1)—> Bit(n)

Carry — Bit(7)
Bit(0) - Carry

EXAMPLE: LABEL RRC R32
TYPE: Single Register

STATUS C —set to bit O of the original value
BITS: N —seton result

Z —setonresult

C msb 6 5 4 3 2 1 Isb

An example of the RRC instruction is: If the B register contains the value >93 and the carry
status bit is zero, then the ‘RRC B’ instruction changes the operand value to >49 and sets the
carry status bit. When the carry is ‘0’ this instruction effecively divides the vaiue by 2. A value
of >80 becomes >40. By using this instruction more once, the value can be divided by any
power of 2. Care must be taken to assure the correct value in the carry bit.

3.5.44

3.5.45

SBB Subtract With Borrow SBB
SYNTAX: SBB <s>,<d>

EXECUTION RESULTS: (d)-(s)-1 + C—>(d)

EXAMPLE: LABEL SBB %23,B Subtract 23 from B register
TYPE: Dual Register

STATUS C —setto ‘1’ if no borrow; ‘0’ otherwise

BITS: N —seton result.

Z —setonresult.
SBB is used for multiprecision two’s complement subtraction. An SBB instruction with an
immediate operand of zero value is equivalent to a conditional decrement of the destination
operand. With (s)=0, and C="0’, then (d) is decremented, otherwise it is unchanged. A
borrow occurs if the result is negative. In this case, the carry bit is set to ‘0’".
SETC Set Carry SETC
SYNTAX: SETC
EXECUTION RESULTS: 1-—> carry

EXAMPLE: LABEL SETC

TYPE: Implied Operand
STATUS Ce1
BITS: N <0

Z 1

SETC is used to set the carry flag if required before an arithmetic or rotate instruction.

3-43

3.5.46 STA Store A Register STA
SYNTAX: STA <d>

EXECUTION RESULTS: (A)=—»(d)

EXAMPLES: LABEL1 STA @LABEL4 Direct addressing
LABEL2 STA @LABEL5(B) Indexed
LABEL3 STA *R13 Indirect

TYPE: Extended Address

STATUS C<«0

BITS: N — set on value loaded

Z — seton value loaded

The STA instruction is used to store values anywhere in the 64K memory address space. The
direct addressing provides an efficient means of directly accessing a variable in general
memory. The indexed addressing provides an efficient table look-up capability. Indirect
addressing allows the use of very large look-up tables and the use of multiple memory pointers
since any pair of registers can be used as the pointer. The Decrement Register and Jump if
Non-Zero instruction (DJNZ) can be used with either indexed or indirect addressing to create
fast and efficient program loops or table searches.

3.5.47 STSP Store Stack Pointer STSP
SYNTAX: STSP

EXECUTION RESULTS: (SP)—=(B)

EXAMPLE: LABEL STSP
TYPE: Implied Operand
STATUS

BITS: Not changed

STSPis used to make a copy of the SP if required. This instruction can be used to test the stack
size. The indexed addressing mode may be used to reference operands on the stack. Ex: STSP
then LDA @ >0000(B) will put the present value on top of the stack into A register.

3-44

3.5.48

3.5.49

SUB Subtract SuB
SYNTAX: SuB <s>,<d>

EXECUTION RESULTS: (d) - (s)=—>(d)

EXAMPLE: LABEL SuUB R19,B

TYPE: Dual Register

STATUS C —setto ‘1’ ifresuit > = 0, ‘0’ otherwise
BITS: N —setonresult

Z —setonresult

SUB is used for two’s complement subtraction. The carry bit is set to ‘0" if a borrow is required.
The carry bit could be renamed a “No-Borrow ” bit in this case.

SWAP Swap Nibbles SWAP
SYNTAX: SWAP <d>

EXECUTION RESULTS: bits(7,6,5,4, 3,2,1,0)— bits(3,2,1,0, 7,6,5,4)

EXAMPLE: LABEL SWAP R45

TYPE: Single Register

STATUS C —set to bit O of the result or bit 4 of the original
BITS: N —setonresults

Z —setonresults
SWAP exchanges the first four bits with the second four bits. This instruction is equivalent to 4

consecutive RL (rotate left) instructions. It is used to manipulate four bit operands, especially
during packed BCD operations.

3-45

3.5.50 TRAP Trap To Subroutine TRAP

SYNTAX: TRAP <n> n=0-23

EXECUTION RESULTS: SP + 1 — SP
PC MS Byte —> stack
SP + 1 —> SP
PC LS Byte —> stack
Entry vector — PC

EXAMPLE: LABEL TRAP 15

TYPE: Miscellaneous
STATUS
BITS: not changed

The operand <n> is a trap number which identifies a location in the Trap Vector Table,
addresses >FFDO to >FFFF in memory. The contents of the two-byte vector location form a
16-bit trap vector to which a subroutine call is performed. TRAP is an efficient way to invoke a
subroutine. The highest block of memory is the Trap Vector Table, and contains as many
subroutine addresses as available traps for the TMS7000 family member. The subroutine
addresses are stored like all other addresses in memory, with the least significant byte in the
higher-addressed location, as shown below.

TRAP VECTOR TABLE
>FFDO Trap 23 address msb
>FFD1 Trap 23 address Isb
>FFEO Trap 15 address msb
>FFE1 Trap 15 address Isb
>FFFA Trap 2 address msb
>FFFB " Isb
>FFFC Trap 1 address msb
>FFFD " Isb
>FFFE Trap O address msb
>FFFF Trap O address Isb

Note that TRAPs 0, ,1,2 and 3 correspond to the hardware-i\nvoked interrupts 0, 1, 2, and 3
respectively. The hardware-invoked interrupts, however, push the program counter and the
status register before branching to the interrupt routine, while the TRAP instruction pushes
only the program counter. TRAP O will branch to the same code executed for a system reset but
will not set or clear all the registers like the hardware RESET. For more information see Section
6.3.3.

3-46

3.5.51

3.5.52

3.5.53

TSTA Test A Register TSTA
SYNTAX: TSTA

EXECUTION RESULTS: C.N,Z bits set

EXAMPLE: LABEL TSTA Test A register
TYPE: Implied Operand

STATUS C<«0

BITS: N — set on value in A register

Z — seton valuein A register

This instruction can be used to set the status bits according to the value in the A register. This
instruction is equivalent to the CLRC (Clear Carry) instruction.

TSTB Test B Register TSTB
SYNTAX: TSTB

EXECUTION RESULTS: C,N,Z bits set

EXAMPLE: LABEL TSTB Test B
Register

TYPE: Implied Operand

STATUS C «0

BITS: N — seton value in B register

Z — seton value in Bregister
This instruction can be used to set the status bits according to the value in the B register. It may
be used to clear the carry bit. This instruction is equivalent to the XCHB B (exchange B with B)
instruction.
XCHB Exchange With B Register XCHB
SYNTAX: XCHB <d>

EXECUTION RESULTS: (B) +—> (d)

EXAMPLE: LABEL XCHB A exchange B register with A register
XCHB R3 exchange B register with R3

TYPE: Single Register

STATUS C«0

BITS: N — set on original contents of B

Z — seton original contents of B

XCHB is used to exchange a register with the B register without going through an intermediate
location. The XCHB instruction with the B register as the operand is equivalent to the TSTB
instruction.

3-47

3.5.54

3.5.55

3-48

XOR Exclusive Or XOR
SYNTAX: XOR <s>,<d>

EXECUTION RESULTS: (s) .XOR. (d) = (d)

EXAMPLE: LABEL XOR R98,R125
XOR % 1,R20 Toggle bit 0 in R20
TYPE: Dual Register
STATUS C+0
BITS: N — setonresult

Z — setonresult

XOR is used to perform a bit-wise exclusive OR operation on the operands. The XOR
instruction can be used to complement bits in the destination operand. Each bit of the 8-bit
result follows the truth table shown at the beginning of this section. This operation can also
toggle a bit in a register. If the bit value in the destination needs to be the opposite from what it
currently is, then the source should contain a ‘1’ in that bit location.

XORP Exclusive Or Peripheral File XORP
SYNTAX: XORP <s>,<d>

EXECUTION RESULTS: (s) .XOR. (d)=—>(d)

EXAMPLE: LABEL XORP % >01,P9 Reverse direction of pin C(0)
TYPE: Peripheral File

STATUS C«0

BITS: N — set onresult

Z — setonresult

XORP is used to perform a bit-wise exclusive OR operation on the operands. The XORP
instruction can be used to complement bits in the destination PF register. The example above
inverts bit O of P9, which is the port C data direction register, thus reversing the direction of the
pin.

4.1

4.1.1

ELECTRICAL SPECIFICATIONS

TMS7000/TMS7020/TMS7040/TMS70120/TMS7001/TMS7041
Description Of The TMS7000/TMS7020/TMS7040/TMS70120/TMS7001/TMS7041

The TMS70XO0 devices (TMS7000, TMS7020, TMS7040, and TMS70120) are single chip
8-bit microcomputers containing a CPU, timer, /0, RAM, and various amounts of on-chip
ROM. The TMS7020 contains the CPU, RAM, timer, and 1/O on-chip, and also provides 2K
bytes of on-chip ROM. The TMS7040 offers the same features as the TMS7020 and has an
increased on-chip ROM size of 4K bytes. The TMS70120 offers the same features as the
general family and efficiently handles large programs with 12K bytes of on-chip ROM. The
TMS7000 family member contains the same features of the TMS7020 except it contains no
on-chip ROM.

The TMS70X1 devices (TMS7001 and TMS7041) contain a flexible on-chip serial port in
addition the CPU, timer, 1/0, and on-chip RAM and ROM. The TMS7041 contains 4K bytes of
on-chip ROM, while the TMS7001 has no on-chip ROM.

Each member in the TMS70X0 and TMS70X1 families have 128 bytes of on-chip RAM, and all
have the capability through memory expansion modes, to access up to 64K bytes of address
space. For additional information on the TMS7000 family architecture, refer to Section 2.
Table 4-1 depicts the TMS70X0 and TMS70X1 family features.

TABLE 4-1 — TMS70X0 AND TMS70X1 FAMILY FEATURES

FAMILY MEMBERS

FEATURES
7000 | 7020 | 7040 | 70120 | 7001 | 7041
ON-CHIP ROM (BYTES) NONE | 2K 4K 12K | NONE | 4k
ON-CHIP RAM (BYTES) 128 128 | 128 128 128 128
INTERRUPT LEVELS 4 4 a a 6 6
GENERAL PURPOSE 128 128 | 128 128 | 128 128
INTERNAL REGISTERS
TIMERS 13817 | 13817 | 13817 | 13.8i7 | 13BIT | 13-BIT
(Two) | (Two)
-
1/C LINES:
BI-DIRECTIONAL 16 16 16 16 2 22
INPUT ONLY 8 8 8 8 2 2
OUTPUT ONLY 8 8 8 8 8 8
ADDITIONAL 1/0 - - - - |SERIALISERIAL
PORT | PORT
PROCESS

TECHNOLOGY NMOS | NMOS | NMOS | NMOS | NMOS | NMOS

Unless otherwise indicated the following specifications for the TMS7000 apply to the
TMS7020, TMS7040, TMS70120, TMS7001, and TMS7041.

41

4.1.2

42

Key Features

Microprogrammable instruetion set
Strip Chip Architecture Topolegy (SCAT) for rapid family expansion
Register-to-register architecture

Family members with 2K, 4K, and 12K bytes of on-chip ROM and ROMless versions

On-chip 8-bit timer/event counter with 5-bit prescale:
— Internal interrupt with automatic reload
— Capture latch

— Second 8-bit timer/event counter with 5-bit prescale and cascade capability

(TMS7001 and TMS7041 only)
Flexible on-chip serial port (TMS7001 and TMS7041 only)
— Fully software programmable
— Internal or external baud rate generator
— Separate baud rate timer usable as a third timer
— Asynchronous, isosynchronous, or serial modes
— Two multiprocessor communication formats
128-byte RAM register file
Full-feature data/program stack
32 TTL-compatible I/O pins:
— 16 bi-directional pins (22 bi-directional pins on TMS7001 and TMS7041)
— 8outputpins
— 8 high-impedance input pins (2 input pins on TMS7001 and TMS7041)
Memory-mapped ports for easy addressing
256-byte peripheral file
Memory expansion capability:
— 64K byte address space
8-bit instruction word
Eight powerful addressing fermats including:
— Register-to-register arithmetic
— Indirect addressing on any register pair
— Indexed and indirect branches and calls
Two's complement arithmetic
Single-instruction binary coded decimal (BCD) add and subtract
Two external maskable interrupts
Flexible interrupt handling:
— Priority servicing of simultaneous interrupts
— Software execution of hardware interrupts
— Precise timing of interrupts with the capture latch
— Software monitoring of interrupt status
Accurate pulse width measurement and modulation
N-channel silicon gate MOS, 5-volt power supply
40-pin, 600-mil, dual-in-line package
100-mil or 70-mil pin-to-pin spacing packages

4.1.3 Absolute Maximum Ratings Over Operating Free-Air Temperature Range (Unless Otherwise

Noted)T

Supply voltage, Vcc (SeeNote 1) —0.3Vto7V
Allinputvoltages —0.3Vto20V
Alloutput voltagesot i e e —0.3Vto7V
Continuous POWer dissiPation\ ittt et e e 1w
Operating free-air temperaturerange 0°C to 70°C

Storage temperature range

—55°C to 150°C

1 Stresses beyond those listed under ' Absolute Maximum Ratings’’ may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any other conditions beyond those indicated in the ‘‘/Recommended Operating Conditions’’ section
of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: Unless otherwise noted, all voltages are with respect to Vgg.

4.1.4 Recommended Operating Conditions
PARAMETER MIN NOM MAX | UNIT
Supply voltage, Vcc 4.5 5 5.5 \%
CLOCKIN 2.6 \
High-level i t volt. , Vi
igh-level input voltage, V|H All others) v
CLOCKIN .
Low-level input voltage, V)i 06 Y
All others 0.8 \
High-level output current, loH -400 rA
Low-level output current, I 10 mA
Operating free-air temperature, Ta (o] 70 °C
4.1.5 Electrical Characteristics Over Full Range of Operating Conditions
PARAMETER TEST CONDITIONS MIN TYPT max | unIT
Iy Input current, INPUT-only pins Vy=Vgg to Vcc +2 +10 uA
Iy Input current, 1/O pins Vi=0.4 Vto Vcc +10 +=100 uA
C) Input capacitance 2 pF
VOH High-level output voltage lo=-400 yA 24 28 \%
VoL Low-level output voltage 10=3.2 mA 0.2 0.4 \%
t(0) Output rise time? 9 50 ns
%(0) Output fall time * 10 60 | ns
1 |
cc Supply current _ All outputs open 80 150 mA
PD(av) Average power dissipation 400 825 | mW

T Al typical values are at Voc = 5V, Tp = 25°C.

* Rise and fall times are measured between the maximum low level and the minimum high level using the 10% and 90% points (see Figure 4-2). Outputs
have 100-pF loads to Vgg.

2192V

560 2

Vo

I 100 pF

FIGURE 4-1 — OUTPUT LOADING CIRCUIT FOR TEST

43

QUTPUTS
24Vl e — — —, -— e e = e = o= = — VOH (MIN)
22 V= ———— —_——— T 90%
0.6 V — e o — = 10%
0.4 Vj = = — VoL (MAX)
0
INPUTS
20V ——— e N\ e eV} (MIN)
188V
092V %
0.80 V ViL (MAX)
V]
FIGURE 4-2 — MEASUREMENT POINTS FOR SWITCHING CHARACTERISTICS
4.1.6 Recommended CRYSTAL/CLOCKIN Operating Conditions Over Full Operating Range
PARAMETER MIN TYP MAX | UNIT
fosc CRYSTAL/CLOCKIN frequency (divide-by-4 option) 2.0 10.1 MHz
fosc CRYSTAL frequency (divide-by-2 option) (see Note 1) 1.0 5.05 | MHz
te(P) CRYSTAL/CLOCKIN cycle time (divide-by-4 option) 99 500 ns
te(P) CRYSTAL cycle time (divide-by-2 option) 198 1000 ns
t(S) Internal state cycle time 396 2000 ns
tw(PH) CLOCKIN pulse width high 45 ns
tw(PL) CLOCKIN pulse width low 45 ns
ty CLOCKIN rise time# 30 | ns
tf CLOCKIN fall time* 30 | ns
td(PH-CL) CLOCKIN rise to CLOCKOUT rise delay 125 200 ns

* Rise and fall times are measured between the maximum low level and the minimum high level using the 10% and 90% points (see Figure 4-2). Outputs
have 100-pF loads to Vgg.
NOTE 1: Divide-by-4 option recommended with external clock drive.

r—‘c(P)'—"‘
|

XTAL2/
CLKIN

I "‘f‘ tw(PL)
td(PH-CL) -H

CLKOUT l / \

l
le
je

TN
g

tc(S)

FIGURE 4-3 — CLOCK TIMING

(a) TMS70XX

XTAL1 XTAL2/CLKIN

18
5 MHz,

PARALLEL

15pF =X RESONANT <15 pF

00—

(b)
18
NC eiind
17
17
S CLOCK
SOURCE

Alternative use of ceramic resonators is illustrated in Section 4.1.8.

FIGURE 4-4 — RECOMMENDED CLOCK CONNECTIONS

XTAL1
TMS70XX

XTAL2/CLKIN

NOTES: The divide-by-2 input can be used with XTAL only. Divide-by-4 can be used with XTAL or CLKIN inputs.

4.1.7 Memory Interface Timing At 10 MHz Over Full Operating Free-Air Temperature Range
PARAMETER MIN TYP MAX UNIT
te(C) CLOCKOUT cycle time {see Note) 400 2000 ns
tW(CH) CLOCKOUT high pulse width 130 170 200 | ns
twicL) CLOCKOUT low pulse width 150 190 240 ns
td(CH-JL) CLOCKOUT rising to ALATCH falling edge 260 300 340 ns
tGICHEL) CLOCKOUT rising to ENA falling 10 15650 | ns
tw(JH) ALATCH high pulse width 150 190 230 ns
(AH-JL) High address valid before ALATCH fall 50 170 220 ns
,ﬂAL- JL) Low address valid before ALATCH fall 50 150 220 ns
th(JL-AL) Low address hold after ALATCH fall 30 45 80 ns
tRW-JL) RD/WR valid before LATCH fall 50 140 200 | ns
th(EH-RW) RD/WR hold after ENA rise 40 100 ns
._tﬂLE_H- AH) High address hold after ENA rise 30 40 ns
th(EH-Q) Data out hold after ENA rise 65 80 ns
t4(Q-EH) Data out valid before ENA rise 230 290 ns
tH(AF-EL) ENA fall after low address HI-Z 0 30 120 ns
td(EH-AF) ENA rising to next address drive 60 85 ns
__‘Q_LELD) Data in after ENA falling 155 190 ns
th(EH-D) Data in hold after ENA rise 0 ns
‘d(A-D) Access time, data in from valid address 400 470 ns
td(A-EH) ENA high after address valid 580 730 ns

NOTE: t.(C) is defined to be 4/fgsc (or 2/fosc if the divide-by-2 option is selected) and may be referred to as a machine state or simply a state.

CLKOUT (B7)

ALATCH (B4)

HI ADDR (DO-D7)

LO ADDR (C0-C7)

ENABLE (B6)

RD/WR (BS)

4-6

EXTERNAL READ
[tetc)—1
-+ tw(CL)
H tw(CH)
|
|

4

EXTERNAL WRITE

A

—{ta(cH-JL

L|——1— tw(JH)

"

|

4

-

>

Ftd(CH-EL)

[\

RAM READ

INTERNAL READ

/\

/\

.

\

-JI “—]I;‘d(AH—JL) N
: i 1 — th(EH-AH)
— !
] 4
ESS ﬁ HI ADDR 4 HI ADDR N 7 HI ADDR
2 | 4 | V4 /J
—~ = th-an| T
— ”—ll'td(AL-JL) “}r"“E”' D) -~ th(EH-Q)
Y T // T
pATA (14 5\ | pATAR A LS / ﬂg,c LO-
out []=2 IN o DATA OUT 198 ADDR
. .tl ! I 7_‘< A 1 /
Ao — _Ltd(l“—'d(EH-AF)I Ir
r- -0 _| ~
+ F—ta(AF-gL) | I [~ta(Q-Et)
! 1
|| |
| = [tnen-rw) |
—-{ F—tarw-a> | | | | td(A-EH) |

—

FIGURE 4-5 — READ AND WRITE CYCLE TIMING

4.1.8

Application of Ceramic Resonator
The resonant circuit shown in Figure 4-6 provides an economical alternative to quartz crystals

where frequency tolerance is not a major concern. Frequency tolerance over temperature is
about 1%.

Ceramic resonator suppliers.

MURATA CORPORATION OF AMERICA

1148 Franklin Rd. SE. For 5 MHz operation

Marrietta, GA. 30067 Resonator ceralock CSA5.00MT
404/952-9777 Resistor 1 MS2 10%

Telex: 0542329 Murata ATL Capacitors (both) 30 pF

NGK SPARK PLUGS (USA) INC.

20608 Madrona Ave. For 5 MHz operation
Torrance, CA 90503 Resonator R5.0M
213/328-6882 Resistor 1 MQ2 10%
Telex: 664290 Capacitors 68 pF £ 10%

KYOCERA INTERNATIONAL
8611 Balboa Ave.

San Diego, CA 92123
714/279-8310

Telex: 697929

P18 XTAL1

[P‘W XTAL2

RESONATOR

TMS7000

RESISTOR

,l\—rj\ CAPACITORS

FIGURE 4-6 — CERAMIC RESONATOR CIRCUIT

4-7

4.1.9 Serial Port Timing (TMS7001, TMS7041, And SE70P161 Only)

4.1.9.1 Internal Serial Clock

CLKOUT
B(7) | I I '
(NOTES a,b) { !""‘d(CL-SL)

|
SCLK 1
A(6)
(NOTE c) |
—f I-td(cum
TXD
XD
B(3)) (T
tdmo-cu—" "—
i)((; Don’t Care X RXD x Don’t Care
] |

tw(RD)

RXD
SAMPLE SAVED

NOTES:

a) The CLKOUT signal is not available in Single-Chip mode.
b) CLKOUT = tg(c) = 2
c) Example shows SCLK = @/8.

PARAMETER TYP UNIT
td(CL-SL) CLKOUT low to SCLK low 1/4 t¢(C)
td(CL-TD) CLKOUT low to new TXD data 1/4 te(C) ne
td(RD-CL) RXD data valid before CLKOUT low 1/4 t¢(C)
tw(RD) RXD data valid time 1/2 t¢(c)

48

4.1.9.2 External Serial Clock

CLKOUT Y
(NOTE a) |
I‘_—.'- (Note c) : '.——-JL-(Nole d)
SCLK p*— td(sE-TD)——od |
A(6) | |
(NOTE b) | |
Jo—————td(SB-TD) el I
TXD ' 1
B(3) TXD '
—+ [*—tamo-cu
RXD , Don”
Don‘t C on’t
A5) e m Care
‘w(no)-'l""'
RXD
SAMPLE SAVED
NOTES:
a) The CLKOUT signal is not available in Single-Chip mode.
CLKOUT = tgc) = 2
b) Example shows SCLK = @/10.
c) SCLK sampled; if 1 then 0, fall transition found.
d) SCLK sampled; if 0 then 1, rise transition found.

PARAMETER TYP UNIT
t4(RD-CL) RXD data valid before CLKOUT low 1/4 te(C)
tw(RD) RXD data valid time 1/2 tg(C)

ns
td(SB-TD) Start of SCLK sample to new TXD data 3% t¢(C)
t4(SE-TD) End of SCLK sample to new TXD data 2% tc(C)

4.1.9.3 Rx Signals In Communication Modes

ws [] [
®

RXRDY]

5
“\“""’/°X1X2X=X~Xs)(;$/;$"7°X1XZX=X~X5X°/S*°’

NOTES:

a) Format shown is start bit + seven data bits + stop bits.

b) SCLK is continuous, external or internal.

c) User means user software executed by CPU.

d) If RXEN = 0, RXSHF still receives data from RXD. However, the data
is not transferred to RXBUF and RXRDY and INT4 FLG are not set.

SEQUENCE OF EVENTS

1) RXSHF data is transferred to RXBUF. Error status bits are set if an error is detected.
2) User writes to INT4 CLR to clear INT4 FLG. If not, CPU clears.

INT4 FLG on entry to Level 4 interrupt routine.

4) User reads RXBUF.

4.1.9.4 Tx Signals In Communication Modes

W |
On

TXEN

START

PAR
STOP
@_.STOP
START

o

-

N

w

»

o

o

~
PAR
sTOP
sTOP

TXE —__-l
TXRDY @_}__l @ I
'—:I)/o‘m?msxexv

NOTES:

a) Format shown is start plus eight data parity bits plus two stop bits.
b) SCLK is continuous whether internal or external.
c) User means user software executed by CPU.

SEQUENCE OF EVENTS

1) User writes to TXBUF.

4)
2) TXBUF and WU data is transferred to TXSHF and WUT and
5)}{ INT4 FLG and TXRDY are set.

6) User resets TXEN; current frame will finish and transmission will stop whether TXBUF is full or empty.
7) TXE is set if TXBUF and TXSFT are empty.

3) User writes to INT4 CLR to clear INT4 FLG or CPU clears INT4 FLG on entry to level 4 interrupt routine.

4-11

4.1.9.5 Rx Signals in Serial I/O Modes

INT4
FLG

RXEN

RXRDY (D @

o XX T XX XXX X

NOTES:

a) RXEN has no effect on INT4 FLG or RXRDY in serial I/0 mode.
b) RXD is sampled on SCLK rise; external shift registers should be clocked on SCLK fall.
c) The SCLK source should be internal as it is gated by internal circuitry.

SEQUENCE OF EVENTS

1) User starts receiving by setting RXEN.

2) Gated SCLK starts and data is received.

3) RXEN is automatically cleared in last data bit.

4) RXSHF data is transferred to RXBUF and RXRDY and INT4 are set.

5) User writes to INT4 CLR to clear INT4 FLG; if not CPU clears INT4 FLG on entry to level 4 interrupt

routine.
6) User reads RXBUF.

4.1.9.6

Tx Signals in Serial I/O Modes

INT4
FLG

TXEN

TXE l

—

TXRDY !
1

XX XX XX X7

SCLK

NOTES:

a) Format shown is eight data bits.
b) The SCLK source should be internal as it is gated by internal circuitry.

SEQUENCE OF EVENTS

1) User writes to TXBUF.
2) TXBUF data is transferred to TXSFT; INT4 FLG and TXRDY are set and SCLK starts.

b

3) User resets TXEN, current frame will finish and transmission will halt whether TXBUF is full or empty.

4) Frame ends and SCLK stops because TXEN = 0.

4-13

4.1.10 Pin Descriptions

4.1.10.1 Pin Description of The TMS7000/TMS7020/TMS7 040/TMS70120

Figure 4-7 defines the pin assignments and describes the function of each pin for the
Single-Chip (SC), Peripheral Expansion (PE), Full Expansion (FE), and Microprocessor Modes

for the TMS70XO0 family (TMS7000, TMS7020, TMS7040, TMS70120).

SIGNATURE | PIN | 1/0 DESCRIPTION

AO (LSB) 6 IN 1/O Port A: Input lines

A1l 7 IN (Specific 1/0 configuration for;

A2 8 IN Single Chip Mode — see Section 2.3.1,

A3 9 IN Peripheral Expansion Mode — see

A4 10 IN Section 2.3.2, Full Expansion

A5 16 IN Mode — see Section 2.3.3, Micro-

A6 15 IN processor Mode — see Section 2.3.4)

A7 (MSB) 1 IN

BO (LSB) 3 [OUT | I/O Port B: Output lines

B1 4 | OUT | (Specific 1/0 configuration for;

B2 5 OUT | Single Chip Mode — see Section 2.3.1,

B3 37 |OUT | Peripheral Expansion Mode — see

B4/ALATCH 38 |OUT | Section 2.3.2, Full Expansion

B5/R/W 1 |OUT | Mode — see Section 2.3.3,

B6/ENABLE 39 |OUT | Microprocessor Mode — see Section

B7/CLOCKOUT| 2 |OUT| 2.3.4)

CO (LSB) 28 1/0 | 1/0 Port C: General purpose bidirectional

Cc1 29 1/0 | lines (Specific 1/0 configuration for; Single

c2 30 1/0 | Chip Mode — see Section 2.3.1, Peripheral

Cc3 31 1/0 | Expansion Mode — see Section 2.3.2,Full

Cc4 32 1/0 | Expansion Mode — see Section 2.3.3,

Cc5 33 | I/0

Cc6 34 1/0 | Microprocessor Mode — see Section 2.3.4)

C7 (MsB) 35 | 1/0

DO (LSB) 27 1/0 | 1/0 Port D: General purpose

D1 26 1/0O | bidirectional lines (Specific

D2 24 1/O | 1/0 Configurations for; Single

D3 23 1/0 | Chip Mode — see Section 2.3.1 .

D4 22 1/0 | Peripheral Expansion Mode — see

D5 21 1/0 Section 2.3.2, Full Expansion Mode —

D6 20 1/0 | see Section.2.3.3, Microprocessor

D7 (MSB) 19 | 1/0 | Mode — see Section 2.3.4)

INT1 13 IN Maskable Interrupt

INT3 12 IN Maskable Interrupt

RESET 14 IN RESET

mMcC 36 IN Mode Control

XTAL2/CLKIN 17 IN Crystal input for control of internal 0SsC.;
input pin for external OSC. or LRC
networks

XTAL1 18 IN Crystal input for control of internal 0SC.;
leave open for external OSC.

vee 25 IN Supply voltage (+5V)

Vss 40 IN Ground reference

414

FIGURE 4-7 — SC, FE, PE, AND MICROPROCESSOR MODE PIN ASSIGNMENTS

BS/R/W
87/CLOCKOUT

28

XTAL2/CLKIN
XTAL1

©CONDO HWN =

Vss
B6/ENABLE
B4/ALATCH
B3

mc

c7

c6

c5
ca
c3
c2
c1
co
DO
D1
Vce
D2
D3

D4
DS

4.1.10.2 Pin Description Of The TMS7001/TMS7041

Figure 4-8 defines the pin assignments and describes the function of each pin for the
Single-Chip (SC), Peripheral Expansion (PE), Full Expansion (FE), and Microprocessor Modes
for the TMS70X1 family (TMS7001 and TMS7041)

BS/R/W
B7/CLOCKOUT

XTAL2/CLKIN
XTAL1

D7

D6

SIGNATURE PIN | /O DESCRIPTION

AO (LSB) 6 110 1/0 Port A: General Purpose Bidirectional lines

A1l 7 110 (Specific 1/0 configuration for:

A2 8 /0 Single Chip Mode — see Section 2.3.1,

A3 9 1/0 Peripheral Expansion Mode — see

A4 10 110 Section 2.3.2, Full Expansion

AS5/RXD 16 | IN Mode — see Section 2.3.3, Micro-

A6/SCLK 15 110 processor Mode — see Section 2.3.4)

A7 1 IN

BO (LSB) 3 |ouT 1/0 Port B: General purpose Output lines

B1 4 |OUT (Specific 1/0 configuration for:

B2 5 |OUT Single Chip Mode — see Section 2.3.1,

B3/TXD 37 |ouT Peripheral Expansion Mode — see

B4/ALATCH 38 |OUT Section 2.3.2, Full Expansion

BS/R/W 1 |OUT Mode — see Section 2.3.3,

B6/ENABLE 39 |OUT Microprocessor Mode — see Section

B7/CLOCKOUT 2 |ouT 2.3.4)

CO (LSB) 28 | 1/0 1/0 Port C: General purpose bidirectional

c1 29 | /O lines (Specific 1/0 configuration for: Single

Cc2 30 | 10 Chip Mode — see Section 2.3.1, Peripheral

Cc3 31 /0 Expansion Mode — see Section 2.3.2, Full

ca 32 | /O Expansion Mode — see Section 2.3.3,

C5 33 110

Cc6 34 | 1/0 Microprocessor Mode — see Section 2.3.4).

C7 (MSB) 35 | I/0

DO (LSB) 27 | /IO 1/0 Port D: General purpose

D1 26 | /0 bidirectional lines (Specific

D2 24 | /0 1/0 Configuration for: Single

D3 23 | /0 Chip Mode — see Section 2.3.1,

D4 22 | 1/0 Peripheral Expansion Mode — see

D5 21 1/0 Section 2.3.2, Full Expansion Mode —

D6 20 | 110 see Section 2.3.3, Microprocessor

D7 (MSB) 19 | VO Mode — see Section 2.3.4).

INT1 13 | IN | Maskable Interrupt

I_T‘J-_ﬁi_ 12 IN Maskable Interrupt

RESET 14 | IN | RESET

mC 36 | IN Mode Control

XTAL2/CLKIN 17 IN Crystal input for control of internal OSC.;
input pin for external OSC. or LRC networks

XTALA 18 IN Crystal input for control of internal OSC.;
leave open for external OSC.

Vce 25 IN Supply voltage (+5 V)

Vss 40 | IN Ground reference

FIGURE 4-8 — SC, FE, PE, AND MICROPROCESSOR MODE PIN ASSIGNMENTS

40
39
38
37
36
35
34
33

31
30
29
28
27

24
23
22
21

Vss
B6/ENABLE
B4/ALATCH
B3/TXD

MmC

c7

cé

cs

ca

c3

c2

c

co

Do

D1

Vce

D2

D3

D4

D5

4.2

4.2.1

4-16

TMS70C00/TMS70C20/TMS70C40
DESCRIPTION OF THE TMS70C00/TMS70C20/TMS70C40

The TMS70C00, TMS70C20, and TMS70C40 devices extend the TMS7000 family line into
low power CMOS applications. They are single chip 8-bit microcomputers containing CPU,
timers, 1/0, and on-chip RAM and ROM. Table 4-2 presents the basic features of the present
TMS70CXX family members.

The TMS70CXX family (TMS70C00, TMS70C20, and TMS70C40 devices) are fully software
and pin compatible with their TMS70XX NMOS counterparts. They differ in the areas of
interrupt operation, power down modes, input/output levels, operating voltage, and frequency
range.

The TMS70CXX family maintains the four hardware interrupt levels of the TMS70XX family
(RESET, INT1, INT2, and INT3). The TMS70CXX family implements INT1 as only a
latched interrupt, not a latched and level interrupt as on the TMS70XX NMOS devices. The
TMS70CXX family implements RESET, INT2, and | NT 3 in exactly the same manner as in
the TMS70XX family (i.e., | NT 3 is both latch and level sensitive). Refer to Section 2.5 for
additional information on interrupt operation.

The TMS70CXX family supports two low power modes, the WAKE-UP mode and the HALT
modes. Both of these modes are entered via execution of the IDLE instruction. The selection of
the power down mode is determined by bit 5 of the timer 1 control register (T1CTRL) and then
executing the IDLE instruction. The device is released from both power down modes through
activation of RESET or acknowledgement of an enabled interrupt. Note that interrupts must
be enabled in the status register and the I/0 control register ((OCNTO) before the power down
mode is entered for INT 1, INT2 (timer), or I NT 3 to be acknowledged. It is important that
both power down modes provide RAM data retention.

Unless otherwise indicated, the following specifications for the TMS70C00 apply to the
TMS70C20 and TMS70C40 as well.

TABLE 4-2 — TMS70CXO0 FAMILY FEATURES

FAMILY MEMBER

FEATURES 70C00 | 70C20 | 70C40
ON-CHIP ROM (BYTES) NONE | 2K aK
ON-CHIP RAM (BYTES) 128 128 128
INTERRUPT LEVELS 4 4 4
GENERAL PURPOSE
INTERNAL REGISTERS 128 128 128
TIMERS 13817 | 13817 | 138IT
1/0 LINES:

BI-DIRECTIONAL 16 16 16

INPUT ONLY 8 8 8

OUTPUT ONLY 8 8 8
ADDITIONAL 1/0 - - -
PROCESS

TECHNOLOGY cmos | cmos | cmos

422 Key Features

Microprogrammable instruction set
Strip Chip Architecture Topology (SCAT) for rapid family expansion
Register-to-register architecture
Family members with 2K and 4K bytes of on-chip ROM and a ROMiess version
On-chip 8-bit timer/event counter with:
— Programmable 5-bit prescale
— Internal interrupt with automatic reloading
— Capture latch
e 128-byte RAM register file
L Full-feature data/program stack
e 32 CMOS-compatible I/O pins:
— 16 bi-directional pins
— 8 output pins
— 8 high-impedance input pins
¢ Memory-mapped ports for easy addressing
e Wide voltage operating range, frequence range
— 3V -1MHztypical
— B5V-3.3 MHz typical
e Two software selectable low-power modes
256-byte peripheral file
e Memory expansion capability:
— 64K byte address space
e 8-bit instruction word
e Eight powerful addressing formats including:
— Register-to-register arithmetic
— Indirect addressing on any register pair
— Indexed and indirect branches and calls
Two's complement arithmetic
Single-instruction binary coded decimal (BCD) add and subtract
Two external maskable interrupts
Flexible interrupt handling:
— Priority servicing of simultaneous interrupts
— Software execution of hardware interrupts
— Precise timing of interrupts with the capture latch
— Software monitoring of interrupt status
Accurate pulse width measurement and modulation
Complementary silicon gate MOS
40-pin, 600-mil, dual-in-line package
100-mil or 70-mil pin-to-pin spacing packages

4.2.3
Noted)t

Supply voltage, Vpp (See Note 1)

Allinput voltages .
All output voltages

Input current

Continuous power dissipation
Operating free-air temperature range
Storage temperature range

Absolute Maximum Rating Over Operating Free-Air Temperature Range (Unless Otherwise

....—03Vto7V
—0.3VtoVpp + 0.3V
—0.3VtoVpp + 0.3V
.+ 10mA
0.5W
....0°Cto70°C
—55°C to 150°C

t Stresses beyond those listed under * Absolute Maximum Ratings’’ may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any other conditions beyond those indicated in the ‘‘Recommended Operating Conditions’’ section
of this specification is not implied. Exposure to absolute-maximum-rated conditons for extended periods may affect device reliability.

NOTE 1: Unless otherwise noted, all voltages are with respect to Vgg.

4.2.4 Recommended Operating Conditions
PARAMETER MIN NOM MAX | UNIT
Supply voltage, Vpp 3 5.5 \
Vpp =5V Vpp-1 \%
High-level input voltage, VIH | Vpp = 4V Vpp-0.7 \
Vpp = 3V Vpp-0.5 \
Vpp = 5V 1 \
Low-level input voltage, V| Vpp = 4V 0.7 \
Vpp = 3V 0.5 \2
Operating temperature range, Tat o} 70 °c
T Plans are underway to extend the operating temperature range from —40°C to 85°C.
4.2.5 Electrical Characteristics Over Full Range Of Operating Conditions
PARAMETER TEST CONDITIONS MIN TYPt MAX | UNIT
! = —1mA, V =5V -2. -0.
VoH High-level output voltage OH il DD Vpp-2.5 Vpp-05 \%
IloH = —0.4 mA, Vpp =5V VDD-0.5 Vpp-0.2
VoL Low-level output voltage lop = 1.7 mA, Vpp = 5V 0.3 0.4 \
1} Input leakage current Vy = VpD, Vpp = 5V 5 pA
VoH = Vpp-0.5V, Vpp = 5V -0.3 -1.2
V = Vpp-0.5V, V =4 -0. -0.
loH Source current OH DO DD v 02 08 mA
VoH = VpD-0.5V, Vpp =3V -0.1 -0.5
VoH = 2.5V, Vpp =5V -1 -4.5
VoL = 04V, Vpp =5V 1.7 2.4
loL Sink current VoL = 0.4V, Vpp = 4V 1.2 1.8 mA
VoL = 0.4V, Vpp = 3V 0.7 1
Operating,
fosc = 3 MHz, Vpp = 5V 55 8 | ma
Wake-up mode, 500 800 A
fosc = 3 MHz, Vpp = #
Ipp Supply current osc z Db 5V
Halt mode Vpp =5V 250 550 uA
Halt mode, XTAL/CLKIN = GND, 2 10 A
allinput = Vpp or GND, Vpp = 5V #

T Ali typical values are at Vpp = 5V, Ta = 25°C.

4-18

LOAD VOLTAGE

970 @

T 100 pF

FIGURE 4-9 — OUTPUT LOADING CIRCUIT FOR TEST

Vo

4.2.6 AC Characteristics For Input/Output Ports
PARAMETER TEST CONDITIONS MIN TYPt MAX | uNnIT
CL=1 , Vv =
tr(10) /O port output rise time ¥ L SpF. VoD =SV 50 ns
CL =50pF, Vpp =5V 70 110 150
=1 =
t510) /O port output full time ¥ CL 5 pF, Voo =5V 20 ns
CL = 50 pF, Vpp = 5 V 25 50 70
ty10) /O port input rise/fall time* Vpp =5V 70 ns

t All typical values are at Vpp = 5V, Ta = 256°C.

¥ Rise and fall times are measured between the maximum low level and the minimum high level using the 10% and 90% points (see Figure 4-11).

4.2.7 Recommended CRYSTAL/CLOCKIN Operating Conditions Over Full Operating Range

PARAMETER TEST CONDITIONS MIN TYP MAX | UNIT
Vpp =5V 05 3.6 | MHz
fosc CRYSTAL frequency (see note 1) Vpp =4V 05 2.7 | MHz
Vpp =3V 0.5 1.3 | MHz
Vpp=5V 277 2000 ns
te(P) CRYSTAL cycle time Vpp =4V 370 2000 ns
Vpp=3V 769 2000 ns
VDD =5V 554 4000 | ns
tc(s) Internal state cycle time Vpp=4V 740 4000 ns
Vpp =3V 1538 4000 | ns
tr CRYSTAL rise time ' 30 | ns
tf CRYSTAL fall timet 30 ns
dosc CRYSTAL duty cycle 45 50 55 %
td(PL-CL) CRYSTAL fall to CLOCKOUT rise delay 100 200 ns

t Rise and fall times are measured between the maximum low level and the minimum high level using the 10% and 90% points.
NOTE 1: TMS70CXX family members currently use only the divide-by-two option as the INPUT CLOCK option.

4-19

4-20

XTAL2/CL

CLKOUT

OUTPUTS

45V
4.1V

08V
0.4V

0

INPUTS

40V
3.7V

k——‘c(P)——’i
—’I te 1] |
e]

|

KIN

td(PL-CL)

i
T

te(s)

iy W
-

FIGURE 4-10 — CLOCK TIMING

e e e Vi (MIN)

—_———— e —— — - 90%

—— e e = — — 10%

——————— — — Vg (MAX)

Vi4 (MIN)
—————— — 90%

ViL (MAX)

FIGURE 4-11 — MEASUREMENT POINTS FOR SWITCHING
CHARACTERISTICS (Vpp = 5V)

4.2.8 Memory Inteface Timing At VDD = 5V, fos¢ = 3 MHz Over The Full Operating Free-Air
Temperature Range

PARAMETER MIN TYP MAX | UNIT
tc(C) CLOCKOUT cycle time (see note) 665 ns
tw(CH) CLOCKOUT high pulse duration 260 340 470 ns
tw(CL) CLOCKOUT low pulse duration 180 270 360 ns
td(CH-JL) CLOCKOUT rising to ALATCH falling edge 400 580 ns
td(CH-EL) _ CLOCKOUT rising to ENABLE falling 30 60 ns
tw(JH) ALATCH high pulse duration 260 370 ns
td(AH-JL) High address valid before ALATCH fall 230 330 ns
td(AL-JL) Low address vaiid before ALATCH fall 220 320 ns
td(JL-AL) Low address hold after ALATCH fall 110 160 ns
td(RW-JL) RD/WR valid before ALATCH fall 220 320 ns
th(EH-RW) RD/WR hold after ENABLE rise 170 ns
th(EH-AH) High address hold after ENABLE rise 165 ns
th(EH-Q) Data out hold after ENABLE rise 130 190 ns
td(Q-EH) Data out valid before ENABLE rise 330 480 ns
td(AF-EL) E,NABLE fall after low address HI-Z 0 o 20 ns
td(EH-AF) ENABLE rising to next address drive 130 ns
td(EL-D) Data in after ENABLE falling 290 ns
th(EH-D) Data in hold after ENABLE rise 0 ns
td(A-D) Access time, data in from valid address 770 ns
td(A-EH) ENA high after address valid 800 1150 ns

NOTE: TMS70CXX family members use a cycle time, t¢(C). that is equal to 2/fosc and is referred to as a machine state or simply a state.

4-21

CLKOUT (B7)

ALATCH (B4)

HI ADDR (DO-D7)

LO ADDR (C0-C7)

ENABLE (B6)

RD/WR (B5)

4-22

EXTERNAL READ EXTERNAL WRITE RAM READ INTERNAL READ
I te(c)—1
| tw(cL)
| tw(CH)
Lo
|
| I
| | f———F tdtcH-eD)
—~ I —1td(CH-JL)
- tw(JH)
/ i’ I\
—-} L—'Ihd(AH—JL)
{ I *l —— th(EH-AH)
T T Y,
%
/] f 5 H
Ess [/ HI ADDR HI ADDR ADDR HI ADDR
/ 1 1 1 / / ;
—‘} bt th-an| |
—] l'd(AL—JL) _‘}]’.—'“‘E“'D) - th(EH-Q)
V. T T / 1 4
paTA 4 E\ | DATA 65% AL LO-
7 1] DATA OUT P4o8
Lt (a-0)— FHtd(EH-AR) Tl
L]t td(Q-EH)
+‘| F—td(aF-gL) | I
! |
|
| || {
| = [T thEH-RW)
—‘{ F—tarw-u0) | I F——ta(a-eH) ——]

FIGURE 4-12 — READ AND WRITE CYCLE TIMING

(a)

TMS70CXX ®)
18
nc
XTAL1 XTAL2/CLKIN —» XTAL1
'8 7 TMS70CXX
3 MHz, 17
'__|D|_0 CLOCK XTAL2/CLKIN
SOURCE
PARALLEL
15pF X RESONANT =< 15 pF
= -
(c) — P18 XTAL1
TMS7000 P17 XTAL2
J

RESONATOR

RESISTOR

CAPACITORS

NOTE: The TMS70CXX family currently uses only the divide-by-two option as the input clock options. Sources of ceramic
resonators are given in Section 4.1.8.

FIGURE 4-13 — RECOMMENDED CLOCK CONNECTIONS

4-23

4.2.9 Pin Description Of The TMS70C00/TMS70C20/TMS70C40

Figure 4-14 defines the pin assignments and describes the function of each pin for the
Single-Chip (SC), Peripheral Expansion (PE), Full Expansion (FE), and Microprocessor modes

for the TMS70CX0 family (TMS70C00, TMS70C20, TMS70C40).

SIGNATURE | PIN | l/O DESCRIPTION

AO (LSB) 6 IN 1/O Port A: Input lines

Al 7 IN (Specific 1/0 configuration for;

A2 8 IN Single Chip Mode — see Section 2.3.1,

A3 9 IN Peripheral Expansion Mode — see

A4 10 IN Section 2.3.2, Full Expansion

A5 16 IN Mode — see Section 2.3.3, Micro-

A6 15 IN processor Mode — see Section 2.3.4)

A7 (MSB) 1 IN

BO (LSB) 3 OUT | 1/0 Port B: Output lines

B1 4 OUT | (Specific 1/0 configuration for;

B2 5 OUT | Single Chip Mode — see Section 2.3.1,

B3 37 | OUT | Peripheral Expansion Mode — see

B4/ALATCH 38 | OUT | Section 2.3.2, Full Expansion

B5/R/W 1 |OUT | Mode — see Section 2.3.3,

B6/ENABLE 39 |OUT | Microprocessor Mode — see Section

B7/CLOCKOUT| 2 |OUT| 2.3.4)

CO (LSB) 28 1/0 1/O Port C: General purpose bidirectional

Cc1 29 1/0 | lines (Specific 1/0 configuration for; Single

c2 30 1/O | Chip Mode — see Section 2.3.1, Peripheral

C3 31 /0 Expansion Mode — see Section 2.3.2,Full

Cc4 32 1/O | Expansion Mode — see Section 2.3.3,

C5 33 | i1/0

C6 34 1/0 | Microprocessor Mode — see Section 2.3.4)

C7 (MSB) 35 | 1/0

DO (LSB) 27 1/0 | 1/O Port D: General purpose

D1 26 1/O | bidirectional lines (Specific

D2 24 1/O | 1/0 Configurations for; Single

D3 23 1/0 | Chip Mode — see Section 2.3.1,

D4 22 1/0 Peripheral Expansion Mode — see

D5 21 1/0 | Section 2.3.2, Full Expansion Mode —

D6 20 1/0 | see Section 2.3.3, Microprocessor

D7 (MSB) 19 | 1/0 | Mode — see Section 2.3.4)

INT1 13 IN Maskable Interrupt

INT3 12 IN Maskable Interrupt

RESET 14 IN RESET

mMC 36 IN | Mode Control

XTAL2/CLKIN 17 IN Crystal input for control of internal OSC.;
input pin for external OSC. or LRC
networks

XTAL1 18 IN Crystal input for control of internal OSC.;
leave open for external OSC.

Vee 25 IN Supply voltage (+5V)

Vss 40 IN | Ground reference

4-24

BS/R/W
B7/CLOCKOUT
B0

B1

B2

A0

A1

XTAL2/CLKIN
XTAL1

D7

D6

-

Vo Vo Vo Vs Vo s Vo Ve Ve Ve T |

-
=S O WONDGL H»WN =

-
ONOOOMDdWN
A

[
S ©

(o=

FIGURE 4-14 — SC, FE, PE, AND MICROPROCESSOR MODE PIN ASSIGNMENTS

Vss
B6/ENABLE
B4/ALATCH
B3

MC

c7

c6

cs

ca

c3

c2

c1

co

DO

D1

Vece

D2

D3

D4

DS

4.3

4.3.1

4.3.2

4.3.2.1

4.3.2.2

SE70P161
Description Of The SE70P161 Prototyping Component

The SE70P161 prototyping component is another member of the TMS7000 family of
single-chip 8-bit microcomputers. The SE70P161 is pin compatible with the TMS7020,
TMS7040, TMS70120, TMS7041, and has the same instrucion set described in Section 3 of
this data manual.

The SE70P161 can also be used to emulate CMOS members of the TMS7000 family, with the
following limitations. Because the SE70P161 is an NMOS device, its logic levels are not CMOS
compatible. Also, this device does not support the low-power modes of the CMOS devices
such as HALT or wake-up. Finally, INT1 on the SE70P161 is both latched and level triggered as
in the NMOS devices, not just latched, as in the CMOS devices. Further details of these
differences are provided in the sections which discuss the function.

The SE70P161 serves as a prototyping component for the TMS7000 devices and provides the
ability to verify in real-time software written for all TMS7000 family members mentioned in the
preceding paragraphs. This device uses standard TMS2764 or TMS27128 EPROMs. The
EPROMs are located in a socket on top of a 40-pin dual-in-line package.

The SE70P161 is packaged so that an EPROM device can be plugged into the top of the
package (piggy back). This two chip unit acts as an emulator of the TMS7020 (2K bytes of
internal ROM space), the TMS7040/7041 (4K bytes of internal ROM space) and the
TMS70120 (12K bytes of internal ROM space). The SE70P161 can also be used as an
emulator of any future members derived from the TMS7040/7041 with up to 16K bytes of
internal ROM space.

Prototyping

NOTE

System emulators and development tools are only to be used in a prototype
environment. Texas Instruments does not warrant their use in customer’s
applications.

TMS7041 Prototyping

The SE70P161 uses either 2764 or 27128 EPROMs with 250 nanoseconds access time or
better. The SE70P161 is identical to the TMS7041 except the supply current is a maximum of
150 mA higher because of the EPROM.

TMS7020/7040/70120 Prototyping

The SE70P161 system emulator can be used as a TMS7020/TMS7040/TMS70120
prototype. In this mode, internal peripheral port 16 must be cleared by adding MOVP% >00,
P16 to the initialization routine.

In any expansion mode, peripheral ports 13 through 23 are used internally and are not
accessible to external peripherals in this memory space. In addition, in the full expansion mode,
memory locations COOO through FFFF are reserved for an EPROM and are not externally
available.

4-25

4.3.3

4.3.4

Programming And Installing EPROMS

All EPROM access times are not more than 250 nanoseconds. Pin 1 is identified by a nearby
L-shaped gold trace; socket 1 for the EPROM is located in in the same corner. Table 4-3 shows
the use of the EPROMS.

TABLE 4-3 — EPROM USE

mon | | oo |
SPACE ADDRESS ADDRESS

27128 16K Bytes >C006 >0006

2764 8K Bytes >E006 >0006

2764 4K Bytes >F006 >1006

2764 2K Bytes >F806 >1806

TNOTE: Texas Instruments reserves the first 6 bytes of ROM. Addresses in this range may not be defined by the user
program.

The SE70P161 is fabricated in two versions. Both versions have fixed internal ROM space of
16K bytes (COOO-FFFF), one with a divide-by-two clock generator and the other with a
divide-by-four. Note that on the SE70P161, none of the 16K EPROM address space can be
mapped as external addresses except in microprocessor mode.

Absolute Maximum Ratings Over Operating Free-Air Temperature Range (Unless Otherwise
Noted)t

Supply voltage, VCC (SeeNote 1)ttt —0.3Vto7V
Allinputvoltage i e e e e —0.3Vto20V
Alloutput voltages ottt e —03Vto7V
Continuous power dissipationttt e e e 1w
Operating free-airtemperaturerangeovui .. 0°Cto 55°C
Storage temperature range v vttt e e e e 0°C to 100°C

1 Stresses beyond those listed under **Absolute Maximum Ratings’’ may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any other conditions indicated in the ““Recommended Operating Conditions’’ section of this
specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: Unless otherwise noted, all voltages are with respect to Vgg.

4-26

4.3.5 Recommended Operating Conditions

PARAMETER MIN _ NOM MAX | UNIT
Supply voitage, Vcc 4.5 5 5.5 \

. . v CLOCKIN 2.6 \"
High-level input voltage, V|4 Al others 2 v
Low-level input voltage, V| CLOCKIN 0.6 v

All others 0.8 \4

High-level output current, IoH -400 uA
Low-level output current, lgp 10 mA
Operating free-air temperature, TA 0o 55 | °C

4.3.6 Electrical Characteristics Over Full Range Of Recommended Operating Conditions

PARAMETER TEST CONDITIONS MIN TYP! MAX | UNIT

VOoH High-level output voltage IoH = -0.4 mA 2.4 \

VoL Low-level output voltage loL = 2mA 0.4 v
h Input current V) = Vgg to Ve 10 rA
Icc Average supply current® All outputs open 80 150 mA

T All typical values are at Vo = 5V, Ta = 25°C.
¥ Average supply current without piggyback EPROM device installed.

4.3.7 Recommended CRYSTAL/CLOCKIN Operating Conditions Over Full Operating Range

PARAMETER MIN TYP MAX | UNIT

fosc CRYSTAL/CLOCKIN frequency (divide-by-4 option) 2.0 10.1 MHz

._f; CRYSTAL frequency (divide-by-2 option) (see Note 1) 1.0 5.05 | MHz
tc(P) CRYSTAL/CLOCKIN cycle time (divide-by-4 option) 99 500 ns
te(P) CRYSTAL cycle time (divide-by-2 option) 198 1000 ns
te(S) Internal state cycle time 396 2000 ns
tw(PH) CLOCKIN pulse width high 45 ns
twi(PL) CLOCKIN pulse width low 45 ns
tr CLOCKIN rise time?# 30 | ns
tf CLOCKIN fall time* 30 | ns
td(PH-CL) CLOCKIN rise to CLOCKOUT rise delay 125 200 ns

% Rise and fall times are measured between the maximum low level and the minimum high level using the 10% and 90% points (see Figure 4-3). Outputs

have 100-pF loads to Vgg.

NOTE 1: Divide-by-4 option recommended with external clock drive.

4-27

4.3.8 Memory Interface Timing At 10 MHz Over Full Operating Free-Air Temperature Range
PARAMETER MIN NOM__MAX | UNIT
te(C) CLOCKOUT cycle time (see Note) 400 2000 ns
tw(CH) CLOCKOUT high pulse width 130 170 200 | ns
tw(CL) CLOCKOUT low pulse width 160 190 240 ns
td(CH-JL) CLOCKOUT rising to ALATCH falling edge 260 300 340 ns
td(CH-EL) CLOCKOUT rising to ENABLE falling —10 15 50 ns
tw(JH) ALATCH high pulse width 150 190 230 ns
td(AH-JL) High address valid before ALATCH fall 50 170 220 ns
td(AL-JL) Low address valid before ALATCH fall 50 150 220 ns
th{JL-AL) Low address hold after ALATCH fall 30 45 80 ns
td(RW-JL) RD/WR valid before ALATCH fall 50 140 200 ns
th(EH-RW) RD/WR hold after ENABLE rise 40 100 ns
th(EH-AH) High address hold after ENABLE rise 30 40 ns
th(EH-Q) Data out hold after ENABLE rise 65 80 ns
td(Q-EH) Data out valid before ENABLE rise 230 290 ns
td(AF-EL) ENABLE fall after low address HI-Z 0 30 120 | ns
td(EH-AF) ENABLE rising to next address drive 60 85 ns
td(EL-D) Data in after ENABLE falling 155 190 ns
th(EH-D) Data in hold after ENABLE rise 0 ns
td{A-D) Access time, data in from valid address 400 470 ns
td(A-EH) ENA high after address valid 580 730 ns

NOTE: t¢(c) is defined to be 4/fosc (or 2/fosc if the divide-by-2 option is selected) and may be referred to as a machine state or simply a state.

4-28

CLKOUT (B7)

ALATCH (B4)

HI ADDR (DO-D7)

LO ADDR (C0-C7)

ENABLE (B6)

RD/WR (BS5)

EXTERNAL READ EXTERNAL WRITE RAM READ INTERNAL READ
I te(cy—d
| M tw(CL)
| tw(CH)
| /\
i |
B /\
| | - -t d(CH-EL)
1 [tdtcH-a0)
wi{JH)
| t
I
|
-—i “—'}"d(AH—JL) N
} 1 r— th(EH-AH)
v ¥ vy, V V.,
% % %
ESS f HI ADDR ; HI ADDR % ADDR f HI ADDR
] 1 L4
—'i tha-an| |
— [T taAL-L —ﬂ.—"“E“’m -~ th(EH-Q)
Y, | v /]
oATA (1465 DATA 65/ DATA OUT ﬂé%
out 422 IN af hta) ADDR
IL._E' ! .Ir.;:k A f
td(A-D) —= td(EH-AF)
= —H—+tueo | L oets
+ F—td(aF-gL) | | r
I\l |
|
| [{
I = [txen-rRW)
—-{ F—tacrw-a0) | | F—taa-ern——

FIGURE 4-15 — READ AND WRITE CYCLE TIMING

4-29

4.3.9

Pin Description Of The SE70P161

R/W B(5)

CLK OUT B(7)
B(0)

B(1)

B(2)

A(0)

A1)

A(2)

A(3)

Al4)

A(7)

TNT3

INTT

RST
A(6)/SCLK
A(5)/RXD
XTAL 2/CLKIN
XTAL1

D(7)

D(6)

T PIN LOW, EPROM ALWAYS ENABLED

4-30

‘l_
2_
3._
4
5—
6—
7—
8_
9—
10—
11—
12—
13—
14—
15—
16—
17—
18—
19—
20—

L —40

70P161 —39

°Vee Vce.0|—38
0A12 PGM o | —37
oA7 A130|—36
0A6 ABo|—35
0A5 A9 o] —3a
o0A4 A11.0[—33
0A3 OE'o|—32
0A2 A100[—31
0A1 CElo|—30
0A0 D7 0| —29
oDo D6 o | —28
oD1 D5 o | —27
oD2 D4 o|—26
oVsg D3o|—25
—24

—23

—22

—21

Vss
B(6)/ENABLE
B(4)/ALATCH
B(3)/TXD

MC

C(7) (MsB)
C(6)

C(5)

C(4)

C(3)

c(2)

c(1)

c(0)

D(0)

D(1)

Vce (MAIN ICC SUPPLY)
D(2)

D(3)

D(4)

D(5)

5.1

5.1.1

MICROPROGRAMMING
TMS7000 CUSTOM MICROCODING DESCRIPTION

Standard members of the TMS7000 family implement a general purpose instruction set
intended to address the needs of most potential users. A general purpose instruction set,
however, does not directly address the requirements of any specific application. Microcoding is
a technique which can be used to tailor the instruction set to more efficiently satisfy the
particular application needs. Basic performance attributes of the TMS7000, such as speed and
program size, may be greatly improved by microcoding.

Microcoding invoives modifying the CPU controi logic. This logic impiements the instruction
set of the CPU and, when maodified, includes the user functions as a new assembly language
instruction. The control information (called microinstructions) is contained in a ROM called the
Control ROM, or CROM (see Figure 5-1 TMS7000 CPU Internal Block Diagram). This
microprogram is similar to an assembly language program contained in memory. The control
logic may be modified to implement a new user function by using similar methods as the
masked program ROM. Modifying this microcoded control information allows a relatively
inexpensive way to implement a more efficient user routine. Normally, this routine would be
written in assembly language code which uses more time and ROM. In contrast, altering the
instruction set of a CPU which is not microprogrammed is expensive and usually impractical
due to the complexity of modifying the random logic used to implement its control section.

With custom microcoding, the new function is normally initiated by executing a single, newly
defined assembly language instruction which generates a unique opcode that causes the
function to execute. Microcoding can produce a 40% or greater improvement in performance
depending on the function implemented.

Typical Applications

In a wide variety of applications, microcoding efficiently bridges the performance and cost gap
between general purpose microprocessors/microcomputers and expensive high performance
dedicated controllers. Applications for microcoding are from areas where extended
performance and control at the bit level are required in a dedicated micro-
processor/microcomputer based system. These requirements can include speed and program
size improvements. Texas Instruments’ microcoding capability and support for the TMS7000
makes this microcomputer family the ideal choice for these types of applications.

5.1.2

5-2

Some typical applications for TMS7000 custom microcoding are listed below:

e AUTOMOTIVE * TELECOMMUNICATIONS
DASHBOARD CONTROL MEMORY PHONES
DASHBOARD DISPLAY AUTOMATIC DIALERS
RADIOS PHONE LINKED COMPUTER
CAR COMPUTER TERMINAL

* INDUSTRIAL

e COMPUTER PERIPHERALS MACHINE CONTROL
PRINTERS SPEED CONTROL
DISK CONTROLLERS POSITION CONTROL
KEYBOARDS TEMPERATURE CONTROL
ALPHA-GRAPHIC TERMINALS HIGH-LEVEL LANGUAGE
TAPE CONTROLLERS COMPUTER CONTROL
SMART MODEMS TIMER-CONTROLLER-CLOCKS
HANDHELD COMPUTERS
PLOTTERS ¢ CONSUMER

HOME COMPUTERS

* RETAIL GAMES
POINT OF SALE TERMINALS EDUCATIONAL PRODUCTS
SCALES SPEECH PRODUCTS
BAR CODE READERS SECURITY
VENDING MACHINES SMART APPLIANCES
DATA ENCRYPTION STEREO EQUIPMENT
REMOTE BANK TELLERS
METERING

Key Features

There are several advantages to using microcode to implement a given function instead of
coding that function in assembly language. Among these are:

* IMPROVED EXECUTION SPEED

¢ REDUCED PROGRAM SIZE REQUIREMENTS AT THE ASSEMBLY LANGUAGE LEVEL
¢ ALGORITHM SECURITY

e LESS EXTERNAL LOGIC REQUIRED

One of the most important advantages is the improvement in execution speed of microcoding
over assembly language. This improvement in execution speed results because microcode is
more specific than assembly language and therefore performs less redundant operations in its
execution. This results in more compact and efficient code which executes in fewer CPU
cycles, thereby executing faster.

As an example of this redundancy, consider a sequence of assembly language code that
operates on a byte of data. Any operation on that byte will typically involve bringing the byte
into the CPU, operating on it and possibly another operand and then storing the result of this
operation in memory. Subsequent operations on this result require that the data be again
brought into the CPU before it can be used. In a microcoded version of the same sequence, a

significant amount of execution time can be saved since the data which is required at a later
stage of processing can remain in the CPU. This eliminates the overhead of multiple memory
accesses which store and then retrieve the same information.

Another advantage of microcode is that since the CPU operates more efficiently, less assembly
language code is required to perform a given function. This results in reduced program size and
ROM memory requirements, especially if this code is used repetitively. Specifically, a function
which may take many instructions to implement in assembly language may be executed in
microcode with only one assembly language instruction. Clearly, this can result in significant
savings in memory requirements.

Algorithm security is another positive aspect of microcoding. Once microcoded functions are
implemented on the TMS7000 chip, the algorithm used in their implementation is significantly
more difficult to access than if it were an assembly language program contained in ROM. Thus,
if a particular method of implementing a function is proprietary for any reason, microcoding the
function will increase the security of this information. This is important, for example, in
applications which implement data encryption type functions and in highly competitive
markets such as toys and games.

Microcoding can also reduce the amount of additional logic circuitry required in a system. This
reduction in additional circuitry in a system results because many of the functions to be
performed in the external logic can be accomplished by the microcoded sequences. These
functions include such operations as bit shifting, latching, counting, timing synchronization
and many other functions which can be easily accomplished in microcode. Implementing these
functions in microcode results in a lower system chip count which results in lower system cost
and improved reliability.

5-3

O/l ‘WoY
‘Wvd Ol

<

[

~N

WVHOVIA %2078 TYNYILNI NdD 000LSAL — L-G 3HNDI4

‘payiasse st jeubis 1043U00 3y} uaym Ajuo

9010 8Y3 J0 8]2AD YOBS PBlEANIOE 10U BIE S|0J3UOD "SINIJ0 [013UOD BYI YOIYM UO aseyd 390j0 BY) Ajuo 81ed1pul sesalIuaied Ul S|013U0D a1eB Jajsues] (310N
300030 v2
8 (-0
(YH) (YH) (PH) w4 f—
sng HY sng HY
oL oL
1SNOD ds W 10d HOd 1SNOD
TOHINOD u 01901 X3H1o X3H10
& o e 1Ni0d
1 AYLINZ 8 8 8 8 8
2 (e | - (=]
LH) (kH)
31A8 MOT -) e[and Lond 4
SNg $S3¥AAY (G-L1v 8 8 (0-21v
— /en
31A8 HOIH . ; FED ‘
SN8 SSIHAAY (5.,)4y g 8 (OUHV @oHv
Tvd# - B 8} o
sN8 viva P “ = ‘ 3
AHOWIW (0-2)aw ¢ 8 0-2d (0-2)d ‘8 n 1
o4 [1 i
8 : . v !
7> 7 H
g (OON ooN % s
8 - 3 8 v —_— S
a4 w4 (TN (e A\ (1H) 4 (|
ul 93y aos SNLVLS
4
8 8 v
H OB | wH) P T
J 020
- (0-2)o
) awio

5-4

5.1.3

5.14

Microcoding Example

To illustrate the contrast between functions coded in assembly language vs. functions
implemented in microcode, it is interesting to consider two sequences which perform the same
operation. Figure 5-2 shows an assembly language code sequence which implements the
same multiply algorithm that the TMS7000 MPY instruction uses.

CLR A RESULT INITIALLY ZERO
CLR R3 CLEAR LOOP COUNT

LOOP1 CLRC CLEARS STCBIT

LOOP2 RRC A SHIFT RESULT RIGHT 1 BIT
RRC B CHECK MULTIPLIER BIT
JNC @LABEL ADD ORNO ADD?
INC R3 INCREMENT LOOP COUNT
ADD R2,A PERFORM ADDITION
JMP @LOOP2 PROCESS NEXT BIT

LABEL INC R3 INCREMENT LOOP COUNT
CcmpP %9,R3 NINE LOOPS COMPLETE?
JNE @LOOP1 NO, PROCESS NEXT BIT
TSTA IF YES, SET STATUS, EXIT

FIGURE 5-2 — ASSEMBLY LANGUAGE MULTIPLY SEQUENCE

The assembly language sequence performs an eight by eight bit multiplication. This sequence
leaves the resultant 16-bit product in the A/B register pair and sets the Status Register bits
according to the contents of the A Register (just as the MPY instruction does). The sequence
implements the multiply function as a subroutine and assumes that the two operands are
located in R1 (the B Register) and R2. It should be noted that if a general addressing scheme
had been implemented, additional code would have been required.

Although this sequence implements the same multiply algorithm that the MPY instruction
uses, a minimum of 358 cycles (143.2 us with a 2.5 MHz internal clock rate) are required for its
execution, whereas the microcoded MPY instruction executes in a maximum of 48
microinstruction cycles (19.2 ps). The magnitude of this difference illustrates how much more
efficient microcoded functions can be than functions coded in assembly language.

The significant savings of microcode over assembly language often makes microcoding
indespensible in meeting a design’s performance goals.

Considerations Of Microcoding

There are several tradeoffs to consider in determining whether microcoding is appropriate for a
given application. These tradeoffs include:

* DESIGN CYCLE EXTENDED
e DEVICE TESTING REQUIREMENTS INCREASED
* AVAILABLE CROM SPACE RESTRICTED TO 46 WORDS (OUT OF 160)

®* ONE OR MORE ASSEMBLY LANGUAGE INSTRUCTIONS MUST BE SACRIFICED

5-5

5.1.5

5-6

Each of these tradeoffs require consideration in the microcoding process. A potentially longer
and more complex design cycle needs to be taken into account during the early planning stages
of a microcoding task. This is also true of additional testing requirements dictated by a custom
microcoded CPU. Both considerations should be anticipated and provided for. Also, since the
standard instruction set microcode occupies the full 160 words of CROM, some of the
standard instructions must be removed to make room for custom microcode. The standard
instructions to be removed should be considered carefully to avoid limiting assembly language
programming.

The standard assembly language instruction set has been divided into two groups of
instructions designated core and non-core. Core instructions, considered to be essential in
maintaining architectural integrity, are provided with all TMS7000’s and may not be removed
for microcoding purposes. Non-core instructions may be removed from the standard
instruction set to allow room for microcoding. Of the 160 words in the CROM, 46 are non-core.
The non-core assembly language instructions are listed in Figure 5-3.

MPY Multiply

DAC Decimal Add with Carry

DSB Decimal Subtract with Borrow
DECD Decrement Double

MOVD Move Double

SWAP Swap

CMPA Compare A

XCHB Exchange B

TRAPn Traps 8-23

Peripheral File instructions

FIGURE 5-3 — NON-CORE ASSEMBLY LANGUAGE INSTRUCTIONS
Microcode Development Cycle
The microcode development support package makes development of microcode for the
TMS7000 straightforward and efficient. The microcode development cycle comprises many
steps. These steps are briefly summarized below:
* GENERATE SPECIFICATION FOR MICROCODE
* GENERATE AND VERIFY MICROCODE
e GENERATE AND VERIFY TEST PATTERNS
e PRODUCE AND TEST PROTOTYPE DEVICES
The first step in the microcode development cycle is to determine that microcode is appropriate
for the application and to identify which functions are to be microcoded. Once this is
accomplished, a specification for the microcode is generated and writing of the microcode can
begin. Also at this time, the assembly language code to be contained in the TMS7000’s

program ROM should be generated.

The flowchart in Figure 5-4 shows the microcode development cycle in detail. Contact the Tl
Factory for details of project timing. Microcode can be generated by four different sources: (1)
customer (2) Tl's Regional Technology Center - RTC (3) 3rd party (4) Tl factory. It should be
noted that this flowchart depicts the flow for microcode developed by a customer; however,

Texas Instruments will generate custom microcode if required. The development cycle in this
case is similar to the one shown except that the flow includes validation of the code by the
customer to ensure that the desired function is implemented.

GENERATE
SPEC FOR
MICROCODE

GENERATE

GENERATE
ASSEMBLY
MICROCODE CODE

1

RUN
ON
EMULATOR

NO

GENERATE
TEST
INPUTS

SEND TRANSFER
PACKAGE
TOTI

'
: '

GENERATE FABRICATE

TEST
P
PATTERNS ARTS

TEST
PARTS

v

SAMPLES
T0
CUSTOMER

FIGURE 5-4 — MICROCODE DEVELOPMENT FLOWCHART

57

5.1.6

5.1.6.1

5.1.6.2

5.1.6.3

5-8

Available Support

Support for microcoding is provided through a comprehensive package of software, hardware
and documentation. This support includes:

e TMS7000 MICROASSEMBLER SOFTWARE PACKAGE
e TMS7000 AMPL EMULATOR SYSTEM
e TMS7000 MICROCODE DOCUMENTATION PACKAGE, CONSISTING OF:

— TMS7000 MICROCODE DEVELOPMENT GUIDE (MP #458)

— TMS7000 MICROASSEMBLER USER’S GUIDE (MP #457)

— TMS7000 MICROARCHITECTURE USER’S GUIDE (MP #061)

— TMS7000 MICROPROGRAMMER'’S REFERENCE CARD (MP #459)
TMS 7000 Microassembler Software Package
This package is the software used for running the microassembler on the Tl 990 hard disk
computer. The TMS7000 microassembler (called MICASM) is the microcode assembler for the
TMS7000 family which allows programmers to modify the standard TMS7000 family
microcode and create a microcode object file.
TMS 7000 AMPL Emulator System
The TMS7000 AMPL Emulator, which runs on Tl 990 computers under AMPL, supports the
TMS7000/TMS7020/TMS7040 devices (and their CMOS versions with the same limitations
as the SE70P161, see Section 7.5) and the TMS70120. It allows in-circuit emulation of the
microcoded device running at full speed or single stepping through the microcode.
TMS 7000 Microcode Documentation Package
The Microcode Development Guide is a general microcode development aid which includes a
tutorial on microcoding. This manual is normally the first document required and is helpful in
determining whether microcoding is appropriate for a given application.
The TMS7000 Microassembler User's Guide describes the TMS7000 microassembler
program which is used to generate microinstructions from statements containing mnemonics

for microcode functions.

The Microarchitecture User’s Guide contains all of the details of the internal operation of the
TMS7000 that are necessary for microcoding.

The Microprogrammer’s Reference Card contains a useful collection of reference information
pertinent to microcoding the TMS7000.

5.2

5.2.1

MICROCODED BENCHMARKS

Benchmarks are a common method of comparing the performance of different computing
elements executing the same function. A set of common microprocessor/microcomputer
benchmarks has been microcoded to demonstrate the typical speed improvements possible
through microcoding. These benchmarks and the speed improvements for each are listed in
Table 5-1.

TABLE 5-1 — BENCHMARK 1-6 COMPARISON (2.5 MHz)

7000 7000
BENCHMARK MICROCODED RANK STANDARD RANK
BINARY ADDITION 4 1.0 6.4 63
BCD ADDITION 5.6 1.0 10 56
BLOCK MOVE 315 1.0 1780 21
TABLE SEARCH 101 1.0 453 22
BINARY TO BCD 100 1.0 295 34
BIT1/0 10 1.0 20 50
RELATIVE RANKING 1.0 41

Note that the performance of the TMS7000 assembly language benchmark ranges anywhere
from 21% to 63% of the performance of the microcoded version. These variations are due to
which speed improvement techniques were applied and the extent to which they were able to
be applied.

All benchmarks (except Benchmark 3) are responsible for fetching their own operands.
Therefore the custom microcode must be entered directly from the instruction acquisition
sequence of microcode. The TRAP B instructions all share the TGBO microstate which is
entered directly from IAQ2, the last instruction acquisition microstate. All benchmarks will use
the TGBO microstate for the first microinstruction of the benchmark. The instructions, TRAP 8
through TRAP 15, all enter the TGBO state. Non-core microinstructions were used as needed
starting from the first non-core microinstructions listed in the TMS7000 standard instruction
set source file.

Benchmark 3 uses shared microcode to fetch some of its operands. An unused instruction is
used to enter the shared microcode. This unused instruction will execute the TESTO state after
the addressing mode microcode. The TESTO microstatement is executed after the Long
Addressing Function microcode fetches two of the necessary operands. The opcode used will
be >89 which is currently unimplemented in the standard instruction set.

Benchmark Rules
The following list describes the rules used when microcoding the benchmarks:

1) All of the registers used in the assembly language code may be used. No other
registers may be used.

2) ThePCH, PCL, and SP registers must not be modified except where it is necessary to
read operands. The program counters (PCH and PCL) may be stored on the stack to
allow general use of these registers.

5.2.2

5.2.3

5-10

3) The microcode can assume where its operands are if operand placement is the same
as in the assembly language benchmark.

4) The CPU’'s T, MAL, and IR registers are available for storage. The IR register, which
uses the opcode as a basis for dispatches may be used because no function or group
dispatches will be performed once the benchmark microcode is entered.

An individual description of each microcoded benchmark and what speed improvement
techniques were applied follows.

Benchmark 1: 16 Bit Binary Addition

Two 16-bit unsigned binary integers in on-chip RAM (the register file) are added together; the
result is stored back into on-chip RAM. One integer is contained in the A (MSB) and B registers,
and the other operand is contained in registers R3 (MSB) and R4. The result is left in the A and B
registers. The assembly language code to perform binary addition is:

ADD R4,B Add LSBs together...set up carry for MSB addition
ADC R3,A Add MSBs together...add in carry from LSB addition

This code occupies four bytes of memory and takes 6.4 microseconds to execute. The
corresponding microcode implementation occupies one byte of memory and executes in 4
microseconds. Seven unique microstatements were required to perform binary addition. The
following techniques were used to obtain the 38% speed improvement:

1) Elimination of instruction fetch and PC increment operations for the ADC instruction.

2) Benchmark 1 assumes the operands are located in registers A, B, R3 and R4.
Constants are generated to address registers R3 and R4.

Only a 38% speed improvement was possible in this benchmark due to the simplicity of the
function.

Benchmark 2: 16 Bit Binary Coded Decimal (BCD) Addition

Two unsigned 4 digit packed BCD integers in on-chip RAM are added together and the result
stored back into on-chip RAM. One of the integers is contained in the A (MSB) and B registers
and the other is located in registers R3 (MSB) and R4. The assembly language code is:

CLRC Clear carry for LSB addition
DAC R4,B Add with carry LSBs
DAC R3,A Add MSBs together with carry from LSB addition

This code uses five bytes of memory and executes in 10 microseconds. This benchmark’s
microcode occupies one byte of code space and executes in 5.6 microseconds. Eleven unique
microstatements were required to implement this function. This represents a speed
improvement of 44%. The following techniques provided the 44% improvement:

1) Elimination of instruction fetch and PC increment operations.

2) Assumption of operand placement. Again, as in Benchmark 1, constants are
generated to address registers R3 and R4.

5.24

Only a 44% speed improvement was possible due to the simplicity of the algorithm. Note that
BCD arithmetic is slightly more complex than binary addition, and thus a 44% improvement
was obtained, versus 38% for Benchmark 1. Also note that a CLRC instruction is required
before the first addition since there is only one BCD addition instruction and it adds in the carry
bit from the status registers.

Benchmark 3: Block Move

A block of 127 bytes in off-chip memory is moved to another location also in off-chip memory.
The assembly language code to move blocks of data is:

MoV %127,B Set up number of bytes to move
LOOP LDA @FROM-1(B) Read a FROM block data byte
STA @T0-1(B) Store byte to a TO block address
DJNZ B,LOOP Decrement block move counter...jump if
non-zero

This code uses 10 bytes of code, and when a block length of 127 bytes is specified, will
execute in 1780 microseconds. Note that the table move is started from the end of the table.
The microcode requires five operands: the number of bytes to move, the FROM addresses, and
the TO addresses. The opcode and operands of Benchmark #3 will appear in memory in the
following order:

LOCATION X BENCHMARK 3 OPCODE
X+1 TO MSB
X+2 TOLSB
X+3 FROM MSB
X+4 FROM LSB
X+5 NUMBER BYTES TO MOVE

Six bytes of program storage are needed and program execution will take 315 microseconds.
Twenty-five unique microstatements are required. The CPU register usage is as follows:

PCH register — FROM MSB
PCL register — FROM LSB

T register — TOMSB
MAL register — TO LSB
IRregister =~ — Byte move counter

The microcoded block move allows a variable block move function. If the microcode is passed
a block length of zero, 256 bytes will be moved. The microcode makes no check for being
passed a block length of zero.

Two 16-bit addresses need to be referenced by this benchmark: the FROM block address and
the TO block address. Because there are only two general purpose CPU registers available to
address memory with (T and MAL), the program counter registers (PCH and PCL) are used to
store one of the 16 bit block addresses. The program counter registers are saved on the stack.
Therefore, two bytes of stack must be available for use by this benchmark’s microcedes.

Benchmark 3 uses shared microcode to fetch the TO MSB and the TO LSB addresses. The
Long Addressing function is used to fetch these two operands into the T and MAL registers. An
unused opcode, >89, is available in the Long Addressing function group to be used. The
opcode >89 will direct execution to the TESTO microinstruction after the long addressing

5-11

5.2.5

5-12

mode fetched the TO addresses. The TESTO non-core microstatement is the first non-core
microinstruction used by the benchmark microcode.

The following techniques were applied to yield the 82% speed improvement:

1)

2)

3)

4)

Elimination of instruction fetch and PC increment operations.

The LDA and STA instructions move the data byte to the A register for storage. The
microcode leaves the data byte inside the CPU.

The loop downcounter decrement operation is performed at the end of the block
move loop. However the downcounter equal to zero check is done during the first
microinstruction of the block move loop. This allows the loop to execute in fewer
microstates.

The program counters are incremented when they are retrieved from the stack. Two
cycles are saved because the incrementing of the program counters is done the same
cycle the program counter values are passed thru the ALU to the program counter
registers.

Benchmark 4: Table Search

Benchmark 4 searches a table looking for a key character. The assembly language code
appears like this:

MOV %KEY,A Set up byte to look for

MOV %40,B Set up table length
LOOP CMPA @TABLE-1(B) Does the table byte match key character

JEQ FND If bytes match, jump

DJNZ B,LOOP Decrement table length counter; jump if non zero
NFND Key Not Found
FND Key Found

This code occupies 11 bytes and executes in 326 microseconds. The timings are all done for
the KEY not found condition. The microcode version requires four operands and occupies five
bytes of code space. The microcoded instruction and its operands will appear in memory as

follows:

LOCATION X BENCHMARK 4 OPCODE

X+1 TABLE LENGTH

X+2 KEY VALUE TO SEARCH FOR
X+3 TABLE ADDRESS MSB

X+4 TABLE ADDRESS LSB

When a table length of 40 is passed to the microcode, execution will take place in 101.6
microseconds. Again, the microcode implementation allows variable table lengths and KEY
values. Twenty-one unique microstatements were required to implement the table search

algorithm.

The CPU register usage is as follows:
T register — Table address MSB
MAL register — Table address LSB
IR register — Key value to search for

5.2.6

The A register holds the table length original value. This value is stored for later subtraction
with the current B offset value to yield the correct table offset value when the KEY is found.
The table length downcounter is contained in the B register.

The assembly language version searches the table from back to front. The microcode version
searches the table from front to back. If the microcode searched the table from back to front as
the assembly code does, the table address would have to be reread every iteration of the loop
because of the current table offsets addition into the table base address. The CMPA instruction
does the table offset addition into the base address in the assembly language version. Reading
the table from front to back allows the table address, contained in T and MAL, to be continually
incremented to point to successive table locations. The B register, which contains the table
offset downcounter, is read, decremented, written back to the B register, and then checked for
having reached zero.

The original table length is stored in the A register. Once the KEY is found, the B register is
subtracted from the original table length (in A) to yield the correct table offset.

To obtain the 69% speed improvement, the following techniques were used:

1) Elimination of instruction fetch and PC increment operations.

2) Elimination of unnecessary reads/writes. The table addresses and the KEY character
are all stored internal to the CPU.

3) The table value and the KEY value are compared during the same cycle the B register
is read for the decrement operation.

4) The decision of whether the KEY is found or not is made in the same microcycle that
the B register is decremented and written.

5) The table address is incremented the same cycle as a microjump is done on the table
empty condition.

If the KEY was not found, the B register contents are >FF. This limits the table length to 254
bytes, or >FE. Because the microcode cannot determine the address of the code to execute
when the KEY is found, the PC will be incremented by two to point past the KEY not found
return. This requires that a two byte jump be placed at the NFND label to jump over the KEY
found code.

Benchmark 5: Binary To BCD Conversion

This benchmark performs binary to BCD conversion. A 16 bit binary number, contained in
registers R2 (MSB) and R3, is converted to a Binary Coded Decimal value to be left in registers
A (MSB) and B. The conversion is done by looping 16 times, rotating A and B through the
status carry and adding the BCD number to itself (which sets up the carry for the rotations).
The assembly language code is:

CLR A Clear MSB result
CLR B Clear LSB result
MOV %16,R4 Setup loop count
LOOP RLC B The BCD resultin A and B
RLC A Is generated through the carry bit
DAC R3,R3 Decimal add binary MSB to itself to set up carry
DAC R2,R2 Decimal add binary LSB to itself to set up carry

DJNZ R4,LOOP Decrementloop count and jump if non zero

513

5.2.7

5-14

This code occupies 16 bytes, and takes 295 microseconds to execute. The microcode version
occupies only one byte of code space and takes 100 microseconds to execute. A speed
improvement of 66% is obtained. Generally speaking, iterative functions will yield a greater
speed improvement when microcoding than non-iterative functions.

The T register is used to hold the “A” register value (binary MSB). The T register is written to
the A register at the end of the conversion. The binary LSB is stored in the B register as is done
by the assembly code.

The loop downcounter is stored in the IR register. To decrement a value by one, it will be placed
on the ALU P bus with a zero gated onto the N bus. The ALU will then perform a subtraction
(PSUBN) operation with a zero carry in to decrement the operand. Because the IR only
connects to the N bus, an extra cycle is required each loop iteration transferring the IR thru the
ALU to the MD bus where the next microinstruction will gate the value onto the P bus to
perform the decrement operation.

The 66 % speed improvement was obtained through the use of the following techniques:
1) Elimination of instruction fetch and PC increment operations.

2) Assumption of operand placement. The binary number is assumed to be in R2 and
R3 and the result is assumed to be placed in A and B.

3) Elimination of unnecessary reads/writes. The binary MSB, which the assembly code
manipulates to/from the A register, is left internal to the CPU inthe T register.

4) The constant value “*3"’ (to address R3) and the constant ‘16’ are generated
simultaneously.

5) The binary MSB and LSB (assembly uses CLR A and CLR B) are cleared
simultaneously.

6) The loop downcounter decrement, and equal to zero check, are done at the same
time as the constant ‘2"’ is incremented to point to R3.

Benchmark 6: Bit I/0

Benchmark & tests the ability of microcomputers to perform bit I/O operations. An input only
port (port A) and an ouput only port (port B) are used. If any one of three input bits are a *‘1”*
then an output bit will be set to a ““1"’. Then, if another input bit is a ““0’’ three output bits are
toggled. All inputs may be on the same 8 bit port, but inputs and outputs must be on different
ports. The assembly language code is:

ANDP %IMASK1,PA AND functions checks for *“1’’ bits on PA
Jz NEXT If none are set, jump over bit set instruction
ORP %OMASK1,PB Set the output bittoa ‘1"’
NEXT BTJOP %IMASK2,PA,DONE If any masked bits are a “0”’, jump over toggle
function
XORP %OMASK2,PB Toggle output bits values
DONE

5.3

5.3.1

This code occupies 15 bytes and takes 20 microseconds. The timings are calculated assuming
neither of the two jumps were taken; the ORP and XORP instructions were executed.
Benchmark 7 is passed the foliowing parameters in the order they are obtained from the
program counter pointers:

LOCATION X BENCHMARK 6 OPCODE
X+1 IMASK1
X+2 OMASK1
X+3 IMASK2
X+4 OMASK2

The microcode application of this benchmark uses five bytes of code space and executes in 10
microseconds which represents a 50% speed improvement.

Only the T register is used by this benchmark. The mask values are read into the T register. The
peripheral port values are read onto the MD bus and operated on with the mask values to
provide a port output value or to set up the status (for decision making).

The 50% speed improvement was gained by the application of the following techniques:
1) Elimination of instruction fetch and PC increment operations.

2) Rearrangement of algorithm functions. While the Port A decision is being made, the
read of the output mask is started. Even if the output mask is not needed, the
program counter still needs to be incremented to point to either the next operand or
the next instruction.

3) Port A is an input only port but the ANDP instruction writes to this port. Writing to
port A is not required by this benchmark and was removed in the microcode
application of the benchmark.

MICROARCHITECTURE DESCRIPTION

This section contains a description of the internal architecture of the TMS7000. It describes
primarily the operation of CPU; the memory and on-chip I/O circuitry may vary among the
TMS7000 family members, and will be described in the documentation for those individual
devices. This section is intended to present information regarding the internal architecture of
the TMS7000 family necessary for microcoding these devices. A symbolic microinstruction
assembler called MICASM is provided for assembling microcode instruction mnemonics. This
assembler is described in the TMS7000 MICROASSEMBLER USER’S GUIDE (Part Number
MP457).

TMS 7000 Family Address Space

The TMS7000 family address space is divided into multiple 256-byte pages. Addresses

>0000 to >007F are utilized as a 128-byte Register File or RF, and reference the on-chip RAM.
On-chip ROM is located at the top of the address space, from addresses >F800 to >FFFF for

the TMS7020, and >FO00 to >FFFF for the TMS7040. The last 48 bytes of memory,

addresses >FFDO to >FFFF, are reserved for trap and interrupt vectors. The TMS7000 family

address space is shown in Figure 5-5. Note that the TMS701 20, not depicted in Figure 5-5, has

12K bytes of ROM.

5-15

5.3.2

5-16

ADDRESSES MEMORY

>0000 — >007F RAM REGISTER FILE
>007F — >00FF RESERVED
>0100 — >01FF PERIPHERAL FILE
>0200 — >EFFF § MEMORY EXPANSION :
>F000 — >F7FF PROGRAM ROM (TMS7040 ONLY)
>F800 — >FFCF PROGRAM ROM (TMS7020/40)
>FFDO — >FFFF TRAP VECTORS

FIGURE 5-6 — TMS7000 FAMILY ADDRESS SPACE

The Peripheral File, or PF, is a special 256-byte page in the memory address space. Each
location of the PF is a special control or data register. On-chip circuitry interprets PF Registers
as 1/O control, programmable timer, memory expansion, and other registers to control features
of the chip. For example, the four |/O ports may be accessed as four registers in the PF.
Accesses to the Peripheral File are recognized by the Peripheral/Memory Controller (PMC)
external to the CPU. In general, all chip functions not implemented by the CPU will be
implemented by the Peripheral/Memory Controller, and controlied via accesses to Peripheral
File Registers.

The advantage of defining special pages for the Peripheral and Register files is that accesses to
these areas may be made by specifying an offset of 8 bits, rather than a full 16-bit memory
address. The Register File is located at memory addresses >0000 thru >007F and the
Peripheral File is implemented in the second page of memory address space, from addresses
>0100to >01FF.

Basic TMS7000 Architecture
The major components of the TMS7000 architecture are the CPU, the Peripheral/Memory

Controller, and the RAM and ROM. These cecmponents and their interconnections are shown in
Figure 5-6.

EXTERNAL INTERFACE

CENTRAL / -\ \
PROCESSING 8
UNIT [»——<4 PORTA
8
f »—% PORTB
8
48 ts ¥s t7 #—»4 PORTC
MD | AH| AL c fiN PORT D
PERIPHERAL 54 RESET
/MEMORY 74 INT1,INT3
CONTROLLER

<4 MEMORY CONTROL (MC)

€¢—~—d4 CRYSTAL

2
* RAM ¢—"—4 Vcc. Vss
128x 8

40 PINS TOTAL

ROM
TYPICALLY
2K/4K x 8

FIGURE 5-6 — TMS7000 OVERALL BLOCK DIAGRAM

The Central Processing Unit (CPU) contains the internal registers, which store the operands of
an instruction, and the Arithmetic Logic Unit (ALU), which operates on the internal register
values. A shifter is provided to rotate the output of the ALU before its results are either stored in
an internal CPU register or written to a memory location. The CPU is described in further detail
in paragraph 5.3.4.

The Peripheral/Memory Controller (PMC) is a collection of modules which interface the CPU
with the I/0 ports, memory, and the interrupt inputs. The CPU is connected to the PMC via the
Address Low (AL), Address High (AH), Memory Data (MD), and Control (C) Buses. The MD
Bus, AL Bus, and AH Bus are also connected to the on-chip RAM and ROM memories.

The Peripheral/Memory Controller (PMC) performs many functions. Itinterfaces the CPU to the
outside world by providing control and data registers for I/O ports, interrupts, and internal timer
controls. The interface control registers appear to the CPU as addresses in the Peripheral File. In
the TMS7000, the PF is implemented in the second 256 byte page of memory, at addresses
>0100 to >01FF. Input/output in the TMS7000 is accomplished by reading and writing bytes
in the Peripheral File implemented by the PMC. In terms of the microarchitecture, the exact
functions of the Peripheral File registers are family member dependent.

5-17

5.3.3

5-18

The Control (C) Bus connecting the PMC and the CPU carries control information required in the
interface between these two subsections of the TMS7000. The C Bus is made up of seven
signals, each of which is described briefly below.

* #MEM (Memory): set by the CPU during any memory access.

* #MEMCNT (Memory Continue): set by the CPU during the first cycle of two cycle
memory accesses.

* #WR (Write): set to 1 by the CPU to indicate a memory write operation.

® STINT (Status Interrupt Enable): set by the CPU to allow the PMC to assert IACT.

* IACT (Interrupt Active): set by the PMC if a valid interrupt is active and STINTisa 1.

® RST (Reset): set to 1 by the PMC whenever the external RESET pinisaO.

¢ OTMD (O Bus to MD Bus Enable): set by the PMC to enable the O Bus to drive the MD Bus.
Each of these signals is discussed in greater depth in later sections of this manual. Further
details of interrupt control may be found in the TMS7000 8-Bit Microcomputer Data Manual
(Part Number MP 008A).

Microinstruction Format

This section describes the format of the TMS7000 microinstructions, and details the internal
timing of microinstruction execution.

The CROM is organized as a 64-bit wide, 160-word memory. The current microarchitecture of
the TMS7000 uses 45 bits per microinstruction to control its operation. To allow for future
expansion of this architecture, however, a total of 64 microinstruction bits are reserved in the
architecture definition. Table 5-2 describes the format of the TMS7000 microinstruction word.

TABLE 5-2 — MICROINSTRUCTION WORD FORMAT

BITS FIELD FUNCTION
63-56 #JMPADDR(7-0) BASE ADDRESS FOR NEXT INSTRUCTION
55-63 #JMPCNTL(2-0) JUMP FUNCTION SELECTION

52 #0> PCH GATES O BUS TO PCH REGISTER

51 #MD>T GATES MD BUS TO T REGISTER

50 #-MD> IR GATES MD BUS TO IR REGISTER
49-48 #LOWWRITE(1-0) SELECTS ONE OF 3 O BUS DESTINATIONS

47 #-0>ST GATES O BUS TO ST REGISTER

46 #MD> P GATES MD BUS TO P BUS

45 #PCH>P GATES PCH REGISTER TO P BUS

44 #PCL>P GATES PCL REGISTER TO P BUS

43 #MD> N GATES MD BUS TO N BUS

42 #T>N GATES T REGISTER TO N BUS

41 #ST>N GATES ST REGISTER TO N BUS

40 #BCD>N GATES BCD CONSTANT TO N BUS

39 #IR>N GATES IR REGISTER TO N BUS

38 #ONE> AL GATES CONSTANT ONE TO AL BUS

37 #PAL GATES P BUS TO AL BUS

36 #MAL> AL GATES MAL REGISTER TO AL BUS

35 #SP> AL GATES SP REGISTER TO AL BUS

34 #T> AH GATES T REGISTER TO AH BUS

33 #PCH> AH GATES PCH REGISTER TO AH BUS

32 #ONE> AH GATES CONSTANT ONE TO AH BUS

31 #MEMCNT FIRST ONE OF TWO CYCLE MEM. ACCESS

30 #MEM INDICATES A MEMORY ACCESS

29 #WR INDICATES A MEMORY WRITE

28 #-LST UPDATES STATUS REGISTER BITS
27-24 #SHIFTCNTL(3-0) SELECTS SHIFT/ALU CARRY FUNCTIONS
23-20 #ALUCNTL(3-0) SELECTS ALU FUNCTION

19 #ABL LOGICAL (VS. ARITHMETIC) ALU OP'S
18-0 Reserved

NOTE: In muiltiple bit fields bit 0 is the LSB.

All 160 words of the CROM are required to implement the standard instruction set of the
TMS7000. Because of this, adding other microcoded functions to the TMS7000 requires that
some of the standard instructions be deleted to allow space for the new instructions.

The TMS7000 Standard Instruction Set has been divided into two instruction groups
designated core and non-core instructions. Non-core instructions are those instructions which
Texas Instruments will allow to be removed in order to implement other microcoded functions.
Core instructions may not be removed and are provided with any TMS7000 whether further
microcoding has been implemented or not. Core and Non-core instructions are described in the
TMS7000 Microcode Development Guide, (Part Number MP 458).

A symbolic microprogram assembler, MICASM, is available to aid microprogram generation.
MICASM accepts mnemonic names for bit fields in a microinstruction word, and builds the
appropriate bit patterns. The names of each bit field in the TMS7000 microinstruction word are
given in Figure 5-7. They are distinguished from other signal names by preceeding them with a
#.

5-19

5.3.3.1

5-20

For single bit fields, if the MICASM statement contains the name of the bit, it is asserted in the
assembled instruction. For high-true signals, the bit is set to 1; for low-true signals (such as
#-0>ST), the bit is set to 0. For multiple-bit fields, MICASM accepts any one of a set of
possible names, where each name corresponds to a bit pattern for the multi-bit field. A sample
of a MICASM statement is shown in Figure 5-7.

.ORG ADDO 'ADD Dual Operand Function
Z>AH, 'AH =0 for Page O access
MAL>AL, 'AL = destination register #
MD>P, 'Source operand to P bus
T>N, 'Destination operand to N bus PADDN,ZCI,LST

PADDN,ZCI,LST
'Add them, load status register
MW, "Write the result to destination
JUNC(NEXT); 'Jump to next microinstruction

FIGURE 5-7 — SAMPLE OF A MICASM STATEMENT

The .ORG line establishes the address of the microinstruction in the Control ROM. The
remaining lines contain symbols which set bits in the current microinstruction word. The last
line indicates the next microinstruction that is to be executed.

Microinstruction Cycle Timing

Each microinstruction cycle has four overlapping clock phases; H1, H2, H3, and H4. H1 and
H3 are non-overlapping, and H2 and H4 are non-overlapping. Microinstruction cycles begin on
the rising edge of H1. Two versions of clock generator circuitry are available for the TMS7000.
The first version uses the external crystal frequency directly to generate H1-H4. The second
version divides the crystal frequency by two before generating the internal clock phases.

Figure 5-8 shows the timing relationships of the four internal clock phases H1-H4 and the
signal from the crystal oscillator.

*NOTE: This waveform represents the crystal oscillator output divided by two if that version of the clock generator circuitry is
used.

N N e
o N B
-
N N e

CYCLEi CYCLEi+1

FIGURE 5-8 — MICROINSTRUCTION CYCLE PHASES

5.3.3.2

5.3.3.3

H1-H4, the four internal clock phases, are used as data transfer signals throughout the
architecture. In particular, the current microinstruction is gated out of the Control ROM during
H1. Microinstruction bits required during later phases (H2, H3, H4) are appropriately sampled
by the hardware.

The internal implementation of the TMS7000 uses MOS dynamic ratioless logic which allows
the chip to operate with lower power requirements than with other types of MOS logic. Signal
lines considered to be valid during phase HX (e.g. H1) are precharged during the
non-overlapping phase of HX (e.g. H3). For this reason, timing diagrams in this document will
indicate signal values only during the phase in which they are valid, with a don't care indication
during the phase in which they are precharged.

Memory Cycle Timing

Memory references to the on-chip Register File (RF) require one microinstruction cycle, and are
called short memory cycles. All other references, i.e. to on-chip ROM, extended memory, or
the Peripheral File, require two microinstruction cycles, and are called long memory cycles.
Extended memory must be able to respond in this time period, since no wait states are provided
in the TMS7000.

Short Memory References

The timing for a read or write to the on-chip Register File is shown in Figure 5-9.

5-21

5-22

ON-CHIP RAM MEMORY CYCLE TIMING
i i+1 i+2

MY\ N\
H2 | /T _ /- \L /- |

H3———/_\.____/—___/—_
HI___ /T\ /T /]

ALL SHORT REFS:

#MEM |/
#MEMCNT \

‘—'—’FREGISTER NUMBER (0-255)

aHBus \

ADDRESS HIGH = >00

READS:
#wR [\ ‘
l'——-.LREAD DATA AVAILABLE
WRITES:
#WR |/ ‘

l"_.,'WRITE DATA SPECIFIED

FIGURE 5-9 — ON-CHIP RAM MEMORY CYCLE TIMING

For a Register File read during cycle i, the microinstruction loaded at the initiation of cycle i
asserts #MEM high and #MEMCNT low. #MEM is asserted at all times when a memory
reference is active, and #MEMCNT is asserted high only during the first cycle of two-cycle (ie.
long) memory cycles. #WR is set low for read operations and high for write operations.
Microinstruction i also specifies the contents of the the address bus, placing a >00 on the AH
(Address High) Bus and the register number on the AL (Address Low) Bus. During H2, the MD
Bus is precharged and the RAM is accessed. For the duration of H4, the RAM output data on
write operations and the RAM input data on read operations is on the MD Bus.

Because H4 of cycle i overlaps H1 of cycle i+ 1, the data read on cycle i may be loaded into
registers T or IR at the end of cycle i or gated onto the P or N Buses at the beginning of cycle
i+1. This characteristic of the MD Bus can be very useful in optimizing microcode
performance.

5.3.3.4

Initial members of the TMS7000 family implement only 128 bytes of the 256-byte Register
File; attempts to write to addresses in non-existent on-chip memory will be ignored. Attempts
to read non-existent memory will produce >00.

Long Memory References
The timing for all long memory references is shown in Figure 5-10.
i i+1 i+2
H1 / _
2l /TN 1/ |/

ALL LONG MEM REFS:

-\
H#MEM r
#MEMCNT /——_“

AL BUS

AH BUS
O—+MEMORY ADDRESS
READ:

swr \

READ DATA AVAILABLEfe—1—o]

WRITE: | AT END OF CYCLE | +1

#wR |/

OFF CHIP ONLY jo——+] l I
ON CHIP ONLY

WRITE DATA ASSERTED

FIGURE 5-10 — LONG MEMORY CYCLE TIMING

The memory control signals #MEMCNT, #MEM, and #WR are specified in the microinstruction
directly. Figure 5-10 shows these signals valid during a full microinstruction cycle because,
once specified for a cycle, their state will not change during that cycle.

For all long memory references, #MEM must be asserted high for two consecutive cycles.
#MEMCNT should be 1 for the first cycle, and O for the second cycle. #MEMCNT is asserted by
specifying the MCNT symbol in the MICASM statements for the microinstruction. Various
combinations of the #MEM and #WR microinstruction bits are specified by other MICASM
symbols, as explained in paragraph 5.3.3.6. The 16-bit address to be accessed must be gated

5-23

5.3.3.5

5-24

onto the AH and AL Buses during the first cycle. The Peripheral/Memory Controller latches the
memory address, so the address need not be asserted during the second cycle. It should be
noted that this feature can be used to great advantage in microcode sequences since this
allows the AH and AL Buses to be used for other functions during the second microinstruction
cycle. In this manner, microcode functions may be overlapped which can result in shorter,
faster executing microcode.

For read cycles, #WR is set to O for both cycles. The result of a read appears on the MD Bus in
phase H4 of the second cycle. It may either be loaded into the T or IR Registers at the end of the
second cycle or loaded into the P or N Bus at the beginning of the third cycle.

For write cycles, #WR is set to 1 for both cycles. When the write’s destination is an on-chip
address, the write data must be valid during H4 of the second microinstruction cycle; when the
writes destination is an off-chip address, the write data is required to be valid during H4 of the
first microinstruction cycle. The data used in an off-chip write is latched by the PMC during the
first cycle, and therefore need not be valid during the second cycle, and conversely the data in
an on-chip write need not be valid during the first cycle. This can be used advantageously in
certain microcoding situations. If desired, however, data may be asserted during both cycles.

Interrupt Vector Reads

When an interrupt is received by the Peripheral/Memory Controller, the PMC asserts IACT on
the Control Bus to the CPU, provided that STINT is a 1. The state of IACT may be tested by the
CPU using an INT dispatch (see paragraph 5.3.5.1.5). If an interrupt is active the CPU may then
read an interrupt vector supplied by the PMC on the MD Bus, indicating which interrupt has
occurred. The interrupt vector read requires two cycles, as shown in the timing diagram in
Figure 5-11.

CYCLE
i i+1 i+2

HL Y/ \
N\ __ /[o/ [/"
#MEMCNT [/

#MEM N\
swr N\

AL,AH BUS

VECTOR SUPPLIED—L——ol

FIGURE 5-11 — INTERRUPT VECTOR READS

Notice that #MEM and #WR must be low for both cycles of the interrupt vector read. As with a
long memory read, the vector is not available until the end of the second microinstruction
cycle. An interrupt vector read may be coded in MICASM using the statements described in
Table 5-3.

5.3.3.6

The value of the vector supplied by the PMC for each interrupt is shown in Figure 5-12. There is
a distinction between the interrupt vector supplied by the PMC and the trap vector address at
which the interrupt subroutine entry point address is stored.

INTERRUPT VECTOR TRAP VECTOR
LEVEL SUPPLIED ADDRESS

O (Reset) _— >FFFE

1 >FE >FFFC

2 >FD >FFFA

3 >FC >FFF8

FIGURE 5-12 — INTERRUPT VECTOR REFERENCES

The vector supplied by the PMC is the same as the TRAPn opcode for the TMS7000 Standard
Instruction Set. In order to call the interrupt handler, the microcode generates the trap vector
address from the vector supplied, and reads memory at that location to get the address of the
interrupt handler subroutine. It should be noted that the interrupt trap vector addresses shown
in Figure 5-12 are those implemented in the currently supplied TMS7000 Standard Instruction

Set Microcode. Different t trap vector addresses may be nmnlnmnnfnd if additional microcode is
written to handle modified mterrupt servicing.
Memory Control Signals

The three memory control signals output by the CPU and interpreted by the Peripheral/Memory
Controller are:

e #MEMCNT (Memory Continue): asserted on the first cycle of a two-cycle long memory
reference.

e #MEM (Memory): asserted if the microinstruction references memory of any kind (RAM,
ROM, extended, peripheral).

e #WR (Write): 1 if a write is being performed; O if a read.

The interpretation of various combinations of these signals is described in Table 5-3.

5-25

TABLE 5-3 — MEMORY CONTROLS

#MEMCNT #MEMCNT #MEM #WR Function OTMD MICASM
(previous) (current) Symbol
0 0 0 0 - No Mem Reference - 0 -See Note 1-
0 0 0 1 Gate O Bus to MD Bus 1 0> MD-See Note 2
0 0 1 0 Short Memory Read 0 MR
0 0 1 1 Short Memory Write 1 Mw
1 0 0 0 2nd State Int. Vector 0 INTVEC
1 0 0 1 * lllegal * 1 -
1 0 1 0 2nd State Long Read 0 MR
1 0 1 1 2nd State Long Write 1 MW
0 1 0 0 1st State Int. Vector 1 MCNT, INTVEC
0 1 0 1 * lllegal * 1 -
0 1 1 0 1st State Long Read 1 MCNT, MR
0 1 1 1 1st State Long Write 1 MCNT, MW
1 1 X X * lllegal * 1 —

NOTES: 1. MICASM is not capable of generating this combination of memory controls directly.

5.3.4.

5-26

2. This combination of memory control signals is also the default combination, produced by MICASM when no memory control is specified.

The MICASM symbol or symbols listed in Table 5-3 must be used to specify the appropriate
combination of memory control signals. The #MEMCNT Microinstruction Bit is set
independently by the MICASM symbol MCNT. The various combinations of #MEM and #WR
Microinstruction Bits are set by specifying the MICASM symbols O >MD, MR, and MW.
O>MD may be specified when no memory access is desired, but the ALU Output (O) Bus
contents are to be gated onto the Memory Data (MD) Bus. OTMD, the signal which enables the
O Bus to drive the MD Bus, is generated by the PMC and is defined as OTMD =#WR .OR.
#MEMCNT. The O >MD MICASM statement has been defined only to assert OTMD during
non-memory cycles by generating a unique combination of #WR and #MEMCNT which does
not occur during actual memory cycles. (O>MD should not be coded during memory
accesses). Note, however that the combination of memory controls produced by O>MD is
also the default and will be produced by MICASM if no memory controls are coded in a
particular microinstruction cycle.

MR is specified for a memory read operation, and MW for a memory write. For long memory
cycles, which require two microinstructions, MCNT is specified in the first microinstruction
only. MR or MW must be specified in both microinstructions.

Organization Of The TMS7000 CPU

This section describes the internal organization of the TMS7000 CPU. A block diagram is
shown in Figure 5-13. Each of the internal registers and buses are 8 bits wide. The internal CPU
buses are used to transfer information between registers and to devices external to the CPU.
Normally a bus will be used to transfer data between two particular locations during a
microinstruction cycle. (Buses are precharged at various times during each microinstruction
and therefore cannot be used to store data). These types of transfers of information are
explained in the following descriptions of the various buses and registers within the CPU. In
most cases, a bus will usually have only one source or destination; however, it may be desirable
to have either multiple sources or destinations for bus.

The case of multiple destinations of a bus is a simple extension of a single bus destination; a
bus’s contents are merely gated to several places simultaneously. This can be accomplished by

simply including the MICASM statements for each destination, ie., MD>N and MD >P both
coded in the same microinstruction cycle.

Multiple sources for a bus is more complex. Logically this may be coded in MICASM in a
straightforward manner, just as multiple bus destinations are, however the result is quite
different. The contents of a bus when multiple sources are specified is the logical OR of the two
sources. This may be used advantageously in saving microcode in some situations with one
restriction: the TMS7000 Emulator cannot be used to debug the microcode. It should be
emphasized that this technique should be used only when absolutely necessary and the
Emulator may not be used to check the microcode, which can make a design very difficult to
debug.

555 W OTMD (TRANSFER GATE ‘W
Lire FROMMEM. CONTROL]
307-0) ar)
=LST | =otsT(H3) 2ACH3
ln:\‘ 4 N
TINT TO
o, —= INT. LOG.
AC

| =MDTT(He)
8

|- sTC SENTRY.
POINT
STATUS| z" T3, .01 BCD

STCP.

T2 70

F=BTNHY ENTRY PT.

FeTTNmn f=MDTN(H1)] | =MDTP(H1)

8_MD7:0)

9 - =strnmn
. N0 e

=MEM,=MEMCNT, =WR
MM, MM T W
oTm PERIPHERALS

A

P70l (ABOVE) #———— + RAM
o 1ACT
= 2 ROM
=ACH(3.0)
=ABL ‘] | TranY AST 3 PORTS
= e —— 4 TIMER
AH(7-0) ° AR08 8 AH[T 5 INTERRUPTS
6 MEM. CONTROL
b =paL®)
AL(70) .8 8 AL70}
g 3 z 8 ¥
® N R =PCHTAH|
L4 Fonenmn] FREHT Tt f=poLteien]| =MALTAY] | =seracnn J | <ONELHY
8 fs 8 8 8 1 _FROM IR _IR(2-0)
R(7.2.1.0)
O ex Onex sTC
ONSTAN ponstany rrom J o0
10 PCH PCL MAL sP TO STATUS
AH BUS AL BUS STEZ EXXXX
FROM LEZ CONTROL
SHIFTER
FROM TREG T(7)
p | =0TPCH(H4) :] }]owcuml:] }]o'rMAL(r«))-lorswml INTERR. LOG. RST
3070) 8.

2JAD(7-0)

=LWRY
" | 24 DECODE]

FIGURE 5-13 — INTERNAL ORGANIZATION OF THE TMS7000 CPU

5-27

5.3.4.1

5.3.4.2

5-28

THE PBUS

The P Bus is one of the inputs to the Arithmetic Logic Unit, or ALU. It is called P for positive
because it always contains the positive or left-hand operand; in subtract operations, the ALU
always computes P-N and in add operations, P + N is computed. The P Bus is loaded from the
MD Bus, the AL Bus, the PCH Register, the PCL Register or with the constant >00 or >01. Any
of the AL Bus sources may be placed on the P Bus by gating them onto the AL Bus and
asserting the #PAL microinstruction bit, connecting the P Bus to the AL Bus. A P Bus source
must be coded in each microinstruction cycle. All of the possible P Bus sources are shown in
Figure 5-14.

PBUS MICASM

SOURCE SYMBOL(s) HEX REPRESENTATION

MD Bus MD>P 0000 4000 0000 000
PCH Register PCH>P 0000 2000 0000 000
PCL Register PCL>P 0000 1000 0000 000
MAL Register MAL>AL, AL>P 0000 0030 0000 000
SP Register SP>AL, AL>P 0000 0028 0000 000
>01 constant ONE>AL, AL>P 0000 0060 0000 000
>00 constant Z>PorDC>P 0000 0000 0000 000

FIGURE 5-14 — P BUS SOURCES

The hex representation in Figure 5-14 indicates the bits in a microinstruction that are affected
when the MICASM symbol shown is specified for the P Bus source. Note that if a
microinstruction requires no source on the P Bus, the MICASM symbol DC>P must be
specified to indicate a don’t care condition on the bus.

The P Bus is loaded at the beginning of a microinstruction cycle, on phase H1.
The N Bus

The N Bus is the second input to the ALU. It is called N for negative because in an ALU subtract
operation, the N Bus contains the negative or right-hand operand. The N Bus is loaded from the
MD Bus, the T Register, the IR Register, the Status Register, the BCD Constant Register or the
constant >00. The source of the N Bus is indicated directly by a bit in the microinstruction
word. If the bitis 1, the source is gated onto the N Bus. An N Bus source must be coded in each
microinstruction cycle. All the possible N Bus sources are shown in Figure 5-15.

N BUS MICASM

SOURCE SYMBOL(s) HEX REPRESENTATION
MD Bus MD>N 0000 0800 0000 0000
T Register T>N 0000 0400 0000 0000
Status Register ST>N 0000 0200 0000 0000
BCD Constant BCD>N 0000 0100 0000 0000
IR Register IR>N 0000 0080 0000 0000

>00 constant

Z>NorDC>N

FIGURE 5-15 — N BUS SOURCES

0000 0000 0000 0000

5.34.3

5.3.4.4

If a microinstruction does not require an operand on the N Bus, the MICASM symbol DC>N
must be specified to indicate a don’t care condition on the bus.

The N Bus is loaded at the beginning of a microinstruction cycle, on phase H1.
The AL Bus

The AL (Address Low) Bus holds the the lower 8 bits of all memory addresses. This includes
references to the Register File, Peripheral File, on-chip, and extended memory. The AL Bus is
loaded during phase H1, at the beginning of a microinstruction cycle. The sources of the AL
Bus are the MAL Register, the SP Register, or the constant >00 or >01. The constant >01 is
provided to efficiently address RAM location >01, (the B register of the standard TMS7000).
This also facilitates addressing registers 16 and 17 (>10 and >11). An AL Bus source must
be specified in each microinstruction cycle.

The AL Bus may also be connected to the P Bus by asserting the #PAL microinstruction bit,
which can be accomplished by coding the P >AL MICASM instruction. In this manner, the AL
Bus sources (MAL, SP, or the constant >00 or >01) may be gated onto the AL Bus and then
onto the P Bus to be operated on by the ALU. Likewise, the P Bus sources (PCH, PCL, and MD
Bus contents) may be gated onto the P Bus and then onto the AL Bus to serve as low order
address lines. The MD Bus contents transferred are those present at the start of the
microinstruction, i.e., those output by the previously executed microinstruction. All of the
possible sources of the AL Bus are listed in Figure 5-16.

ALBUS MICASM

SOURCE SYMBOL(s) HEX REPRESENTATION
MAL Register MAL>AL 0000 0010 0000 0000
SP Register SP>AL 0000 0008 0000 0000
PCL Register PCL>P, P>AL 0000 1020 0000 0000
PCH Register PCH>P, P>AL 0000 2020 0000 0000
MD Bus MD>P, P>AL 0000 4020 0000 0000
>01 Constant ONE>AL 0000 0040 0000 0000
>00 Constant Z>ALor DC>AL 0000 0000 0000 0000

FIGURE 5-16 — AL BUS SOURCES

If no AL Bus source is required, the MICASM symbol DC >AL must be specified to indicate a
don't care condition on the bus.

The AH Bus

The 8-bit AH (Address High) Bus contains the high-order byte of the address referenced by the
CPU. Itis loaded during H1, at the beginning of a microinstruction cycle. It may be loaded with
the contents of the PCH Register, the T Register, or the constant >00 or >01. The high byte of
the program counter is intended to be stored in PCH; the T Register is intended to hold the high
byte of other addresses in memory. The constant >01 is provided to efficiently access
addresses in the Peripheral File (i.e., addresses of the form >01XX). An AH Bus source must
be coded in each microinstruction cycle. The sources of the AH Bus are summarized in Figure
5-17.

5-29

5.3.4.5

5-30

AH BUS MICASM

SOURCE SYMBOL(s) HEX REPRESENTATION

PCH Register PCH>AH 0000 0002 0000 00CO
T Register T>AH 0000 0004 0000 0000
>01 Constant ONE>AH 0000 0001 0000 0000
>00 Constant Z>AH or DC>AH 0000 0000 0000 0000

FIGURE 5-17 — AH BUS SOURCES

if no AH Bus source is required, the MICASM symbol DC > AH must be specified to indicate a
don’t care condition on the bus.

The O Bus

The O (Output) Bus always contains the output of the ALU-Shifter combination. Its contents
may be loaded onto the MD Bus, or into the Status, PCH, PCL, MAL, or SP Registers. The
Status Register is loaded by the low-true microinstruction bit #—0 >ST. The PCH Register is
loaded by the high-true microinstruction bit #0 >PCH. The load signals for the other destination
registers (MAL, PCL, and SP) are encoded in the microinstruction bits #.OWWRITE(1-0), as
shown in Figure 5-18. Note that since these bits are encoded, these three O Bus destinations
are mutually exclusive; that is, only one of these destinations may be specified in a given
microinstructicn cycle.

#LOWWRITE OBUS MICASM
1 0 DESTINATION SYMBOL
(0] (] ——none— — _—
o 1 MAL Register O>MAL
1 0 PCL O>PCL
1 1 SP 0O>SsP

FIGURE 5-18 — LOWWRITE (1-0) DESCRIPTION

There is no microinstruction bit that directly loads the MD Bus from the O Bus, because the MD
Bus contents are under control of the Peripheral/Memory Controller (PMC). This transfer is
controlled by the OTMD signal sent from the PMC to the CPU on the C Bus. OTMD is asserted
on every memory write cycle, (on-chip or extended memory), and on the first state of every
long memory cycle. This is diagrammed in Table 5-3.

The O Bus is normally gated onto the MD Bus unless otherwise required in a memory cycle.
Optionally, the O>MD symbol may be coded in a MICASM statement. MICASM sets up the
appropriate values of the #MEM and #WR microinstruction bits so that OTMD will be asserted
by the Peripheral/Memory Controller. The O Bus contents may then be loaded into the T or IR
Registers from the MD Bus. Refer to paragraph 5.3.3.6 for a description of OTMD.

To write the O Bus contents to memory, the memory control signals must be specified. The
destinations of the O Bus are identified in Figure 5-19.

OBUS MICASM MICROINSTRUCTION FIELD
DESTINATION SYMBOL HEX REPRESENTATION

ST Register 0>ST 0000 0000 0000 0000 (Low True)
PCH Register O>PCH 0010 8000 0000 0000

PCL Register O>PCL 0002 8000 0000 0000

MAL Register O>MAL 0001 8000 0000 0000 {Only One
SP Register O>SP 0003 8000 0000 0000 | Of Three
T Register *[O>MD],MD>T 0008 8000 2000 0000

IR Register *[O>MD],MD>IR 0004 8000 2000 0000

Short Mem Cycle Mw 0000 8000 6000 0000

Long Mem, Cycle 1 MCNT,MW 0000 8000 EQOOO 0000

Long Mem, Cycle 2 MW 0000 8000 6000 0000

* Specifying O >MD here is optional

FIGURE 5-19 — O BUS DESTINATIONS

The O Bus is loaded during phase H4 of the microinstruction cycle. It contains the resuit of the

ALU and Shifter operations specified in the current microinstruction.

5-31

5.3.4.6

5-32

The MD Bus

The MD (Memory Data) Bus is a bidirectional bus that transfers data to and from the CPU. Data
is valid on MD during phase H4 of a microinstruction cycle, which spans two microinstructions.
Thus, data may be read from the MD Bus onto the P or N Bus at the beginning of a cycle (H1),
and the ALU results then loaded back onto the MD Bus at the end of the cycle (H4). It is
important to note that when using data from the MD Bus during H1 of a particular
microinstruction cycle, the actual data available will be the contents loaded onto the MD Bus
during the end of the previous cycle.

At the end of a cycle, the MD Bus may be loaded in one of three ways:
1) The O Bus contents may be gated onto the bus.
2) The on-chip RAM or ROM may place data onto the bus.
3) The Peripheral/Memory Controller may place data onto the bus.

The MD Bus contents are controlled by the Peripheral/Memory Controller (PMC). The PMC
sends the OTMD signal to the CPU to signal loading the MD Bus from the O Bus. The CPU
requests use of the MD Bus by asserting combinations of the #MEM,#MEMCNT, and #WR
signals, as shown in Table 5-3. The PMC sends signals to the on-chip ROM and RAM to control
their accesses to the bus.

The timing of read and write accesses to memory is explained in paragraph 5.3.2.3. For short
memory reads, data is available at the end of the microinstruction that initiated the read. This
data may be loaded into the T or IR Registers during that microinstruction by specifying the
MD >T or MD >IR MICASM symbols, respectively. The data may be loaded into the P or N Bus
on the next microinstruction by specifying the MD >P or MD >N symbols in the MICASM
statement for the next microinstruction. For short memory cycle writes, the O Bus data is
placed on the MD Bus, and the MW MICASM symbol specified. For long memory reads, the
desired address is placed on the AH and AL lines, and the MR and MCNT symbols specified in
the first of the two cycles required. At the end of the second cycle, data is available on MD.
(The memory address is latched by the PMC on the first cycle, and need not be asserted on the
second cycle). For long memory writes, the address is specified in the first cycle, and the data
is placed on the MD Bus for the first and/or second cycles. The destinations of the MD Bus in
the CPU are described in Figure 5-20.

MD BUS MICASM

DESTINATION WHEN LOADED SYMBOL
T Register End of Cycle MD>T

IR Register End of Cycle MD>IR

P Bus Start of Cycle MD>P

N Bus Start of Cycle MD>N

FIGURE 5-20 — MD BUS DESTINATIONS

5.3.4.7

ALU Operation

The Arithmetic Logic Unit (ALU) accepts as inputs the values on the P and N Buses, and
outputs its result to the Shifter. The ALU operation is controlled by the #ALUCNTL(3-0) and
#ABL lines from the current microinstruction. The ALU operates on the values loaded on the P
and N Buses during H1 of the current microinstruction and produces an 8-bit output which is
input to the Shifter, and a carry bit (COUT), which is an arithmetic carry bit based on the 8-bit
ALU operation. To specify the carry-in, the ALU accepts the #SHIFTCNTL(3-0) bits from the
current microinstruction. An overall block diagram of the ALU appears in Figure 5-21.

couTt

N BUS

TO
SHIFTER

OUTPUT
P BUS

SHIFTCNTL(3-0)

STC UC

FIGURE 5-21 — ALU BLOCK DIAGRAM

The available operations of the ALU are defined in Figure 5-22.

#ALUCNTL HEX MICASM

(3-0) #ABL REPRESENTATION symBoL ALUOUTPUT
0000 0 0000 0000 0000 0000 PADDN P+N+Cl
0000 1 0000 0000 0008 0000 XNOR P XNORN
0001 1 0000 0000 0018 0000 AND PAND N
0010 1 0000 0000 0028 0000 IPORN (NOTP) ORN
0011 1 0000 0000 0038 0000 PASSN N

0100 1 0000 0000 0048 0000 PORIN P OR (NOT N)
0101 1 0000 0000 0058 0000 PASSP P

0110 1 0000 0000 0068 0000 FF >FF

0111 1 0000 0000 0078 0000 OR PORN

1000 1 0000 0000 0088 0000 NOR PNORN

1001 1 0000 0000 0098 0000 ZERO >00

1010 1 0000 0000 00AS 0000 INVP NOT P

1011 1 0000 0000 0O0B8 0000 IPANDN (NOT P) AND N
1100 1 0000 0000 00C8 0000 INVN NOT N

1101 1 0000 0000 0OD8 0000 PANDIN P AND (NOT N)
1110 1 0000 0000 OOE8 0000 NAND P NAND N
1111 0 0000 0000 OOFO 0000 PSUBN P-N-1+CI
111 1 0000 0000 OOF8 0000 PXORN PXORN

FIGURE 5-22 — ALU FUNCTIONS

5-33

5-34

The Carry-in Bit of the ALU (Cl) is specified by the #SHIFTCNTL(3-0) bits of the
microinstruction, which are described in full in the next section. For operations requiring no
shifting of the ALU contents, the possible carry-in bits are defined in Figure 5-23.

#SHIFTCNTL MICASM ALU CARRY IN
3210 SYMBOL cn

0000 ZCl]

0001 ONECI 1

0010 UcCl UC — Micro Carry Bit
0011 STCI STC — Status Carry Bit

FIGURE 5-23 — ALU CARRY IN VALUES

The Micro Carry Bit (UC) is the carry-out from the ALU operation of the immediately preceeding
microinstruction. This is not the same as the Shift-out Bit (SOUT) from the Shifter operation of
the previous microinstruction. The Status Carry Bit (STC) is the Carry bit of the Status Register.

The arithmetic Carry-out Bit from the ALU (COUT) is 1 if there is a carry-out during an add
(PADDN) or subtract (PSUBN) operation in the ALU. For an add operation, COUT =1 indicates
there was a carry, i.e., the sum of the (unsigned) operands exceeds 255. For a subtract
operation, COUT =0 indicates there was a borrow, i.e., the P operand was lower than the N
operand (unsigned). For all other operations, i.e., logical operations, COUT is set to 0. COUT is
sent to the Status Register circuitry for possible loading into STC, the Status Carry Bit.

As an example of ALU operation, the following symbols appearing in a MICASM statement,
PADDN,ZCI

will cause the ALU to calculate the sum of the P and N Bus contents. To calculate the difference
between the P and N Bus contents,

PSUBN,ONECI
must be specified. A 1 must be carried in since no borrow was desired. Figure 5-24 details two

microcode examples. The microinstructions read the current byte addressed by the PC, place it
in the T Register, and increment the PC.

' Read immediate byte, 1st cycle

.ORG IMMED1 ' Define location of microinstruction

PCL>PP>AL, ' Place PCL on AL Bus via P Bus

PCH>AH, ' Place PCH on AH Bus

Z>N, ' Place Zero on N Bus

PADDN,ONECI, ' Increment PCL by 1 (sets Micro Carry UC

O>PCL, ' Place result back in PCL

MCNT,MR, ' 1st cycle of long read

JUNC(IMMEDZ2); ' Goto next cycle

.ORG IMMED2 ' Read immediate byte, 2nd cycle

DC>AH,DC>AL, ' Don’t care what's on AH and AL since address was
latched on 1st cycle

PCH>P, ' Place PCH on P Bus

Z>N, ' Place Zero on N Bus

PADDN,UCI, " Add micro carry from PCL increment

O>PCH, ' Place result back in PCH

MR, " Meanwhile, continue memory read

MD>T, " And place the byte read into T

JUNC(NEXT); " Then goto next instruction

FIGURE 5-24 — MICROCODE EXAMPLE
Notice that an increment was done.in IMMED1 by using an ALU carry-in of 1. The second
instruction (IMMED2) incremented the high byte of the PC only if the Micro Carry Bit (UC)
generated by IMMED1 was 1.
5.3.4.8 Shifter Operation

The Shifter performs a variety of 1-bit shift operations on the output of the ALU. The
#SHIFTCNTL(3-0) lines control the following ALU and Shifter characteristics:

e The ALU Carry-in Bit (Cl)
* The shift direction (L or R)
* The bit shifted into the Shifter

Figure 5-25 shows the various combinations of shift control lines.

5-35

5-36

#ShiftCntl ALU Shift Shift-In MICASM
3210] Direction Bit Symbol
0000 0 — ZCl
0001 1 No — ONECI
0010 uc Shift — ucl
0011 STC — STCI
0100 1 ALU(7) RLO
0101 0 Shift ALU(7) RLZ
0110 1 Left STC RLCO
0111 0 STC RLCZ
1000 1 ALU(0) RRO
1001 0 Shift ALU(0) RRz
1010 1 Right STC RRCO
1011 0 STC RRCZ
11 XX * Invalid * *

FIGURE 5-26 — SHIFT/ALU CARRY-IN CONTROL

For #SHIFTCNTL =00XX, no shifting is performed, and the ALU Carry-in Bit Cl is as described
in the ALU description, above. For #SHIFTCNTL =010X, the ALU output is rotated left, with
the most significant bit, ALU(7), shifted in from the right. For #SHIFTCNTL=011X, the ALU
output is rotated left through the Status Carry Bit, STC. For #SHIFTCNTL = 100X, the ALU
output is rotated right, and for #SHIFTCNTL = 101X, the output is rotated right through the
carry bit. The MICASM symbols represent this, with the last character indicating the value of

the ALU Cl bit. #SHIFTCNTL = 11XX is an invalid command and must never be specified.

The Shift-out Bit (SOUT) shifted out in a rotate instruction is sent to the Status Register. It will
be loaded as the new Status Carry Bit (STC) if the #-LST microinstruction bit is set. Operation

of each of the shift instructions is diagrammed in Figure 5-26.

5.3.4.9

ROTATE
RIGHT

ROTATE
RIGHT
THRU
CARRY

ROTATE
LEFT

ROTATE
LEFT
THRU
CARRY

IR Register

SOUT = SHIFT-OUT BIT
STC = STATUS CARRY BIT

—_

D7

D6

D5

D4

D3

D2

D1

DO

ALU(0)

STC —»

D7

D6

D5

D4

D3

D2

D1

Do

——

D7

D6

D5

D3

D2

D1

DO

SOuT T

ALU(7)

SOouT

D7

D6

D5

D4

D3

D2

D1

DO

—d sTC

FIGURE 5-26 — SHIFTER OPERATION

) + SOUT

SOuT

The Instruction Register (IR) is a register intended to hold the assembly language opcode. It is
loaded from the MD Bus by specifying the MD >IR symbol in a MICASM statement. It may be

loaded onto the N Bus with the IR>N MICASM symbol.

The TMS7000 Microarchitecture is designed to dispatch (branch) on various subfields of the IR
contents, providing for the execution of appropriate microcode for each assembly language
instruction. The IR may be considered to have two possible formats:

1) Format O is indicated by a O in IR(7), the most significant bit of the IR Register. In this

format, bits IR(6-4) form a 3-bit Group field and bits IR(3-0) form a 4-bit Function field.

2) Format 1isindicated by a 1in IR(7). In this format, bits IR(6-3) form a 4-bit Group field

and bits IR(2-0) form a 3-bit Function field.

The formats of the IR Register are diagrammed in Figure 5-27.

5-37

5.3.4.10

IR REGISTER
7 , 6,5 ,4,3 ,2 1 0

v s
T

FORMAT 0 0 GROUP FUNCTION

FORMAT 1 1 GROUP FUNCTION

FIGURE 5-27 — IR REGISTER FORMATS

The terms group and function refer to logical subsets of assembly language opcodes. In the
TMS7000 standard instruction set the Group field in an opcode indicates the addressing mode
of the instruction, and the Function field indicates the arithmetic or logical operation performed
on the operands. The microarchitecture is designed to allow significant sharing of
microinstructions among opcodes within the same group or function. in the microcode for the
standard TMS7000, for instance, all opcodes of the form >1X share microcode which fetches
the A Register and a general RF register.

The mechanisms for dispatching on the Group and Function field values in the IR are described
in Section 4. Dispatching on an IR subfield may be performed on the first microinstruction after
the IR is loaded. Thereafter, dispatching may be performed by microinstructions up to and
including the next one that reloads the IR. If no dispatching is required, then the IR may be used
as a general purpose 8-bit register.

The Status Register

The Status Register (ST) is an 8-bit register with contents indicating various conditions of the
CPU. Each bit of the Status Register has a special meaning and separate circuitry devoted to it.
The format of the ST Register is shown in Figure 5-28.

7 6 5 4 3 2

1 T
|

|
L v

STC STSB STEZ STINT RESERVED FOR EXPANSION

5-38

FIGURE 5-28 — STATUS REGISTER

STC is the Status Carry Bit. It holds either the carry-out of the ALU, the shift-out of the Shifter,
or the decimal arithmetic carry-out. STSB is the Status Sign Bit. It contains the most significant
bit of the O Bus contents. STEZ is the Status Equal to Zero Bit. It contains a 1 when all bits of
the O Bus are zero. STINT is the Status Interrupt Enable Bit. Bits 3-0 of the Status Register are
reserved for future expansion. These bits wil be zeros when the ST Register is loaded onto the
N Bus.

The existing Status Register Bits may be modified in one of two ways:
1) All bits may be replaced by the contents of the O Bus.

2) The STC, STSB, and STEZ bits may be set according to their particular input circuitry.
The STINT Bit is unaffected in this case.

The Status Register Sources are summarized in Figure 5-29.

ST REGISTER MICASM

SOURCE SYMBOL HEX REPRESENTATION

OBus O>ST 0000 0000 1000 0000 {Asserted low)
Input

Circuitry LST 0000 8000 0000 0000 (Asserted iow)

FIGURE 5-29 — ST REGISTER SOURCE

The O Bus is gated into the Status Register if the #-O>ST Microinstruction Bit is asserted low.
This may be specified by the O >ST symbol appearing in a MICASM statement. The STC,
STSB, and STEZ Bits are loaded when the #-LST Microinstruction Bit is asserted low. This may

be specified by the LST symbol appearing in the MICASM statement. There is no way to

individually load the STC, STSB, and STEZ Bits; they must be loaded together. This feature

permits an efficient implementation of the TMS7000 status logic, typically a very costly itemin

single-chip microarchitectures. The special circuitry defining the value of the STC, STSB, and

STEZ Registers is described in the following paragraphs.

5.3.4.10.1 The Status Carry Bit (STC)

When the #-LST signal is asserted by coding the LST MICASM instruction, the STC Bit will be
loaded from one of three sources:

1) The ALU Arithmetic Carry-out Bit (COUT); This is the carry/borrow bit generated by
the ALU on arithmetic operations. COUT is loaded if no Shifter operation is specified,
i.e., #SHIFTCNTL =00XX.

2) The Shifter Shift-out Bit (SOUT). This is the bit shifted out in Shifter operations. If a
Shifter operation is specified—i.e., #SHIFTCNTL>0011—then SOUT is loaded into
the STC Bit (whether a rotate thru carry was specified or not).
3) The BCD Decimal Carry/Borrow Out Bit (DCOUT). This is the carry bit computed by
the decimal adjust hardware within the BCD Constant Register. It is loaded into the
STC Status Carry Bit if the #8CD >N Bit is set, indicating a decimal adjust constant is
loaded onto the N Bus.
5.3.4.10.2 The Status Sign Bit (STSB)
When #-LST is asserted, the input to the STSB Bit is O(7), the most significant bit of the O Bus.
5.3.4.10.3 The Status Equal To Zero Bit (STEZ)
When #-LST is asserted, the input to the STEZ Bit is the Micro Equal-to-Zero Bit, UEZ. The UEZ

Bit is simply the logical NOR of all O Bus lines. That s, if all O Bus lines are O, UEZ is set to 1.
Otherwise, itis set to 0.

5-39

5.3.4.10.4 The Status Interrupt Enable Bit (STINT)

5.34.11

5-40

The STINT Bit may only be modified by loading the O Bus contents into the Status Register. The
STINT Bit corresponds to bit O(4) in this case. STINT is output from the CPU to the
Peripheral/Memory Controller on the C (Control) Bus between the CPU and PMC. If STINT =0,
the PMC will not pass an interrupt to the CPU via the IACT line (also in the C Bus). If STINT=1,
the PMC will assert IACT on an interrupt. By dispatching on the IACT bit, the microcode is able
to test for interrupts.

Due to propagation delays, the effect of loading STINT on IACT takes two microinstruction
cycles to be asserted. Accordingly, if STINT is updated in cycle i, IACT will not be valid until
cycle i+ 2. Thus a JINT dispatch on IACT will not jump correctly if coded in state i+ 1.

BCD Constant Register

The BCD Constant Register is a module which generates a correction constant for binary coded
decimal arithmetic operations. Decimal numbers on the TMS7000 are represented with 2
binary coded decimal digits per byte, with the least significant digit in the least significant
nibble, bits 3-0, of a byte. For example, the decimal number 78 would be represented in binary
as ‘01111000, or >78. To perform decimal addition on two BCD Bytes X and Y, the following
operations must be performed:

1) The binary sum of X and Y is computed, with the STC Bit carried in, and the result
saved temporarily.

2) A decimal correction constant is computed by the BCD hardware.

3) The correction constant is added to the saved result to produce the final BCD sum.
Each of these operations requires a microinstruction cycle.
The STC Bit is added in order to permit adding multiprecision strings of BCD digits. Decimal
subtraction (with borrow) is similar to the above procedure. The binary difference X-Y is first

computed, and the correction constant then subtracted from the result.

Figure 5-30 indicates the decimal correction constant and decimal carry out bit generated for
decimal addition and subtraction.

H1+H2<9
H1+H2=9
H1+H2>9

OPERAND 1 H1 L1 C = STATUS CARRY BIT (STC)
B = STATUS BORROW BIT
OPERAND 2 H2 L2 (INVERSE OF STC)
DCOUT = DECIMAL CARRY OUT
L1+L2+C<10 10<=L1+L2+C L1-B>=L2 L1-B<L2
>00 >06 H1>H2 | >00 DCOUT | >06 DCOUT
> 00 >66 DCOUT H1=H2 | >00 DCOUT | >66
>60 DCOUT >66 DCOUT H1<H2 | >60 >66

DECIMAL ADD WITH CARRY

DECIMAL SUBTRACT WITH BORROW

FIGURE 5-30 — BCD CORRECTION CONSTANT GENERATION

The BCD constant logic uses signals from the ALU such as the 8-bit carry (COUT), the ALU
operation code #ALUCNTL(3-0), and ALU outputs on the O Bus to determine the correction
constant and Decimal Carry-out Bit (DCOUT). Like the binary arithmetic carry, DCOUT is 1 if a
carry is required after an addition, and O if a borrow is required after a subtraction. Figure 5-30
indicates the conditions in which DCOUT is 1. DCOUT is sent to the Status Register for
possible loading into the STC Status Carry Bit.

Three microinstruction cycles are required to perform a decimal arithmetic operation. The
timing for a decimal arithmetic operation is shown in Figure 5-31.

5-41

5-42

H 0 N T N

4

H4 1 /1 \ /|

P BUS
BCD OPERAND BINARY RESULT

N BUS M
BCD OPERAND CORRECTION CONSTANT

0 BUS M f 2

BINARY RESULT BCD RESULT

SB AW,

BINARY RESULT BINARY RESULT BCD RESULT
SAVED READ WRITTEN

=

#8cD>N [\

LOAD CONSTANT ONTO N BUS

#—st Y/ d

LATCH DCOUT INTO STATUS REGISTER

FIGURE 5-31 — BCD ARITHMETIC OPERATION TIMING

The first state loads the BCD operands onto the P and N Buses, and performs the appropriate
ALU operation (PADDN or PSUBN) to produce the binary result. The binary result must be
stored in a temporary location for use in the third state. The BCD operation diagrammed in
Figure 5-31 assumes the result is stored in the RF. The second state reads this binary result
from the Register File and leaves it on the MD Bus. This state allows the BCD constant
hardware to determine the correction constant and Decimal Carry-out Bit, DCOUT. The third
state loads the binary result onto the P Bus and the correction constant onto the N Bus and
performs the appropriate ALU operation to produce the correct BCD result. The Status Register
should be loaded in this state by coding an LST instruction in MICASM.

The MICASM statement shown in Figure 5-32 implement a decimal add with carry. A source
operand is added to a destination operand, and the result stored in the destination operand (a
register in the RF). The T Register is assumed to contain the source operand, the MD Bus
contains the destination operand, and the MAL Register contains the register number of the
destination operand.

5.3.4.12

.ORG DACO ’ Decimal Add w/ Carry, first state

Z>AH, ' Place destination register address
MAL>AL, ! on address bus: AH=0, AL=MAL
MD>P, ' Dest. operand to P Bus

T>N, " Source operand to N Bus

PADDN,STCI, ’ Add them, including carry from last DAC
MW, * Store binary result in dest. register
JUNC(DAC1); ' Goto DAC1

.ORG DAC1 "DAC, second state

Z>AH, ’ Read binary result back. Put dest. addr
MAL>AL, ! on addr. bus: AH=0, AL=MAL
DC>P,DC>N, ' Don’t cares to P and N Bus
PADDN,ZClI, ’ Maintain ALU operation code (PADDN)
MR, ’ Read binary result, placed on MD Bus
JUNC(DAC2); ' Goto DAC2

.ORG DAC2 " DAC, third state

Z>AH, ' Put destination address on Address Bus
MAL>AL, ! (AH=0, AL=MAL)

MD>P, ' Put binary result on P Bus

BCD >N, ’ Put BCD correction constant on N Bus
PADDN,ZCI, ’ Add them (with no carry)

LST, ' Load Status register with decimal carry
MW, - Store BCD result to destination registe
JUNC(NEXT); ’ Goto next microinstruction.

FIGURE 5-32 — MICASM STATEMENT

For a decimal subtract operation, the PADDN symbols should be replaced with PSUBN. State
DAC2 should subtract the BCD constant via the MICASM symbols PSUBN,ONECI. A carry-in
of 1 is needed since no borrow is required.

Other Registers

The remaining registers implemented in the TMS7000 CPU include five storage registers and
two constant registers. Two of the storage registers, the PCH and PCL, are used to hold the
high and low bytes of the Program Counter. The Program Counter contents are normally
essential to CPU operation, hence the PCH and PCL registers are almost never used as general
purpose storage.

Two other storage registers, the Temporary or T Register and the MAL or Memory Address Low
Byte Register may be paired to store the high and low bytes of a memory address, or used
separately with the T Register serving as temporary storage and a memory address being
generated from the MAL and a constant.

There are two constant registers used for generating the constant >01; one for each of the AH
and AL Buses. Thus either of these buses may be loaded with either >00 or >01 if necessary.
This capability is used for, among other things, generating RF and PF Addresses.

The SP or Stack Pointer is normally used to hold a pointer to the stack in RAM, but may be used
as temporary data storage if a stack is not implemented or if the SP contents are not needed.

5-43

5.3.6

5-44

Microinstruction Sequence Control Overview

This section describes the mechanisms used in controlling the sequence of microinstruction
execution, which include generation of the next microinstruction address in both conditional
and unconditional branching. Included is a description of dispatching capabilities which can be
used to share microstates among several assembly language instructions.

Microinstructions are stored in the Control ROM, or CROM, on the TMS7000 chip. A
characteristic of horizontally microprogrammed architectures like the TMS7000 is that each
microinstruction indicates the address at which the next microinstruction to be executed is
located. In the TMS7000,the next microaddress is specified by two fields:

1) #JMPADDR(7-0), an 8-bit field indicating a base address in CROM.

2) #JMPCNTL(2-0), a 3-bit code indicating one of 8 dispatch offsets from the base
address in #JMPADDR.

If ##MPCNTL(2-0) = 000, then the #JMPADDR field is simply the address of the next
microinstruction. If #JMPCNTL(2-0) is nonzero, it indicates what data will replace the low
order bits of #JMPADDR, and thus form the next microaddress. This technique is called
dispatching, and is extremely easy to implement in MOS technology.

All conditional branching in microcode is accomplished by means of dispatching. A base
address is specified in the #JMPADDR(7-0) bits of the microinstruction. The #JMPCNTL(2-0)
lines indicate what data is used to form the low order bits of the base address to generate the
new microinstruction address. As an example, Figure 5-33 depicts dispatching on the IR(3-0)
Bits.

7 65 43210 765 43210

#JMPADDR(7-0) IR REGISTER

&IIH IIIIJ
T

7 6 54 32 10
NEXT ADDRESS

FIGURE 5-33 — MICROINSTRUCTION DESPATCH EXAMPLE

The dispatch field bits, like IR(3-0), actually replace the low order address bits in the
#JMPADDR(7-0) field; they are not OR’ed with them. For example, suppose #JMPADDR was
specified tbe >11, and the #JMPCNTL(2-0) lines are set to 110, indicating a dispatch on STC,
the Status Carry Bit. If STC were O, the next microaddress would be >10.

Figure 5-34 summarizes the possible dispatch fields and the MICASM code to indicate the next
address.

5.3.5.1

5.3.56.1.1

5.3.5.1.2

#JMPCNTL NEXT ADDRESS MICASM
210 7 6 5 4 3 2 1 0 Format
000 J7 J6 J5 J4 J3 J2 J1Jo JUNC(addr)
001 J7 Jé J5 J4 IR3 IR2 IR1 IRO IRL(baseaddr)
010 J7 J6 J5 J4 J3 J2 J1 T7 JT7 (oneaddr,zeroaddr)
011 J7 Jé J5 Ja J3 J2 J1 UEZ JUZ(oneaddr,zeroaddr)
100 J7 J6 J5 Ja J3 J2 0 IACT INT(oneaddr,zeroaddr)
101 J7 J6 J5 IR7 IR6 IRS IR4 (1) IRH(baseaddr)
110 J7 Jé J5 Ja J3 J2 J1 STC JC(oneaddr,zeroaddr)
111 J7 J6 J5 Ja J3 J2 J1 MUMP MJMP(oneaddr,zeroaddr)

(1) IR3 .or. (.not. IR7)

Jn — #JMPADDRI(n)

IRn — IR Register bit n

T7 — T register sign bit (bit 7)

UEZ — 1if 0 bus = >00, 0 otherwise

IACT — Interrupt Active line from PMC

STC — Status Carry Bit

MJMP — Macro jump: test Status Register bits
baseaddr — Base micro-address for dispatch
oneaddr — Next micro-address if bit 0 is 1
zeroaddr — Next micro-address if bit 0 is 0

FIGURE 5-34 — NEXT MICRO ADDRESS GENERATION
Dispatch Conditions
Each of the dispatch possibilities is further explained in the following sections.
Unconditional Branching (JUNC)

If conditional branching of the microcode is not desired, #JMPCNTL should be set to 000. The
symbol

JUNC(addr)

appearing in a MICASM statement will cause the TMS7000 to branch unconditionally to the
microinstruction at address addr after the current microinstruction is executed. The addr field
may be a constant or, more practically, a symbol equated to the desired address of the
microinstruction. The address addr is loaded into the #JMPADDR(7-0) field of the current
microinstruction.

Function Dispatch (IRL)

When #JMPCNTL =001, the next microinstruction is determined by the low four bits of the the
IR Register. This is specified in MICASM as:

IRL(baseaddr)

The baseaddr is loaded into the #JMPADDR(7-0) field of the microinstruction. The next micro
address is determined by replacing the bits 3-O of the base address with bits 3-O of the IR
Register. To avoid confusion, it is convenient to make the base address a multiple of 16 i.e., bits
baseaddr(3-0) =0, since they will be ignored. The IRL dispatch is indicated pictorially in Figure
5-35.

5-45

CONTROL ROM

N
BASEADDR IR(3-0) =0
DDR+1 _ NEXT MICROINSTRUCTION
BASEA IR(3-0) =1 ADDRESS FOR:
: coe ‘: IRL(BASEADDR)
BASEADDR+15 IR(3-0) = 15
S

FIGURE 5-35 — IRL DISPATCH

An IRL dispatch is a dispatch on the Function field of the IR. In the TMS7000 Standard
Instruction Set the Function field indicates the arithmetic operation to be performed. This is
contrasted with the Group field, bits 7-4, which indicates the addressing mode of the
instruction. Even though Format 1 instructions have a 3-bit Function field; IR(2-0), the IRL
dispatch still performs a 16-way branch on the lower 4 bits of the IR Register. The Function
dispatch for Format 1 opcodes thus depends on the value of the IR(3) Bit.

5.3.5.1.3 Test Sign Bit (JT7)

The sign bit of the contents of the T Register may be dispatched on by specifying
#JMPCNTL =010. This is indicated by

JT7(oneaddr,zeroaddr)
in a MICASM statement. The oneaddr field should be the 8-bit address of the microinstruction

to be executed if T(7) is 1, and the zeroaddr field is the address of the microinstruction to be
executed if T(7) is O. This is shown in Figure 5-36.

CONTROL ROM

ZEROADDR T(7)="0 NEXT MICROINSTRUCTION
ADDRESS FOR:
ONEADDR T ="v JT7 (ONEADDR, ZEROADDR)

FIGURE 5-36 — JT7 DISPATCH

Typically, zeroaddr and oneaddr are MICASM labels initialized by an .EQU statement. It is
required that zerroaddr be even and that oneaddr = zeroaddr + 1.

5-46

5.3.5.1.4 Test If Zero (JUZ)

The microcode may test the value on the O Bus of the immediately preceeding microinstruction
by specifying #JMPCNTL =011. This is indicated by

JUZ(oneaddr,zeroaddr)

appearing in a MICASM statement. When JUZ appears in microinstruction i, it tests the O Bus
contents of the previously executed microinstruction, i-1. The entry-point logic replaces
JMPADDRI(0) with the UEZ Bit from the Status Register, which is 1 when the O Bus is all zeroes
(>00) and O otherwise. The symbol oneaddr denotes the address to which control is
transferred if the O Bus was zero, i.e., if UEZ =1. The symbol zeroaddr denotes the address
jumped to if the O Bus was nonzero, i.e., if UEZ=0. Like the JT7 MICASM symbol, zeroaddr
must be even and oneaddr must equal zeroaddr + 1. The dispatch on the UEZ Bit is depicted in

Figure 5-37.
CONTROL ROM
ZEROADDR UEZ=0 NEXT MICROINSTRUCTION
ADDRESS FOR:
ONEADDR UEZ =1 JUZ (ONEADDR, ZEROADDR)

FIGURE 5-37 — JUZ DISPATCH
5.3.5.1.5 Test If Interrupt (INT)
The microcode may test for a pending interrupt by dispatching on the IACT (Interrupt Active)
signal input from the Peripheral/Memory Controller. This is accomplished by specifying
#JMPCNTL = 100, or in a MICASM statement by:
INT(oneaddr,zeroaddr)
As with the JT7 and JUZ instructions, oneaddr denotes the microinstruction address branch to

if IACT = 1, and Zeroaddr is the address branched to if IACT = 0. Zeroaddr and oneaddr must be
adjacent, as depicted in Figure 5-38.

CONTROL ROM

ZEROADDR {ACT = 0 NEXT MICROINSTRUCTION
ADDRESS FOR:
ONEADDR IACT =1 INT (ONEADDR, ZEROADDR)

FIGURE 5-38 — INT DISPATCH

The IACT line is asserted by the Peripheral/Memory Controller (PMC) when an interrupt
condition is detected. IACT can be asserted only when STINT (Status Interrupt Enable) is 1.
Operation of the PMC in asserting interrupts is further explained in the TMS7000 8-Bit
Microcomputer Data Manual (Part Number MP 008A).

5-47

5.3.5.1.6 Group Dispatch (IRH)

5-48

Dispatching on the Group field of the IR Register is accomplished by specifying 101 in the
#JMPCNTL field. This is indicated by coding

IRH(baseaddr)

in a MICASM statement. The baseaddr field is loaded into the #JMPADDR field of the
microinstruction being defined.

There are 24 groups defined, 8 in Format O (IR(7)=0) and 16 in Format 1 (IR(7)=1). The
groups are numbered in Figure 5-39.

FORMAT 0 FORMAT 1
R GROUP R GROUP
NUMBER NUMBER
0000XXXX 0 10000XXX 8L
0001 XXXX 1 10001 XXX 8H
0010XXXX 2 10010XXX oL
001 1XXXX 3 10011XXX 9H
0100XXXX 4 10100XXX AL
0101XXXX 5 10101 XXX AH
0110XXXX 6 10110XXX BL
0111XXXX 7 10111XXX BH
11000XXX CL
11001 XXX CH
11010XXX DL
11011XXX DH
11100XXX EL
11101XXX EH
11110XXX FL
11111XXX FH

FIGURE 5-39 — TMS7000 GROUP NUMBERS

The IRH(baseaddr) symbol performs a 24-way dispatch on the Group field. This is done by
replacing the low order bits of #JMPADDR with a function of the Group number. The high nibble
of the IR Register, IR(7-4), is placed in the low nibble of the next address, shifted by 1 bit. The
low order bit of the next address, is defined as NEXTADRESS(0) = IR(3).0R.(.NOT.IR(7)). For
Format O instructions, NOT IR(7) =1, and NEXTADDRESS(0) always equals 1. Thus, the
machine will jump to microaddress baseaddr + (group * 2) + 1 for Format O group numbers. For
Format 1 instructions, NOT IR(7) =0, and NEXTADDRESS(0) equals IR(3). Thus, the machine
will jump to microaddress baseaddr +(group*2) +IR(3) for Format 1 group numbers. The
group names given in Figure 5-39 are the first hex digit in the two-digit hex representation of
the IR Register contents. Format 1 names have an Lif IR(3) =0 and Hif IR(3) = 1. The operation
of the Group decode is shown in Figure 5-40.

5.3.5.1.7

CONTROL ROM

BASEADDR
BASEADDR+1 GROUPO
BASEADDR+3 GROUP 1
BASEADDR+5 GROUP 2
.

. LN :
BASEADDR+>0F GROUP 7
BASEADDR+>10 GROUP 8L
BASEADDR+>11 GROUP 8H
BASEADDR+>12 GROUP 9L
BASEADDR+>13 GROUP 9H

[3 .

. XX .

. .
BASEADDR+>1E GROUP FL
BASEADDR+>1F GROUP FH

FIGURE 5-40 — IRH DISPATCH

The CROM addresses baseaddr, baseaddr + 2, baseaddr +4, etc., may be used for other
microinstructions. The microcode for the TMS7000 Standard Instruction Set uses the IRH
dispatch immediately after the assembly language instruction is loaded into the IR. Each group
corresponds to an addressing mode for the instruction, and the microcode executed after the
dispatch fetches the appropriate operands. Typically, a Function, or IRL, dispatch is then
performed, and the microcode branches to perform the appropriate ALU function on the
operands. In this manner, the operand fetch microinstructions are shared among the assembly
language instructions and each instruction has its own microcode to perform the function of
that instruction.

Test if Carry (JC)

The microcode may test the value of the carry bit in the Status Register by performing a
dispatch on the STC Bit. This is indicated by specifying #J/MPCNTL(2-0) =110, or

JC(oneaddr,zeroaddr)
appearing in a MICASM statement. The bit tested is the value of the STC (Status Carry) Bit
after the execution of the immediately preceeding microinstruction, i.e., the microinstruction

executed prior to the one containing the JC(oneaddr,zeroaddr) statement. The STC Bit is
placed in bit O of #JMPADDR, and the result used as the next microinstruction address.

5-49

If the STC Bit is 1, control transfers to oneaddr, and if STC =0, control transfers to zeroaddr.
The locations zeroaddr and oneaddr must be adjacent, with zeroaddr on an even address and
oneaddr on the subsequent odd address. This is diagrammed in Figure 5-41.

CONTROL ROM

ZEROADDR STC=0 NEXT MICROINSTRUCTION
ADDRESS FOR:

JC(ONEADDR, ZEROADDR)

ONEADDR STC=1

FIGURE 5-41 — JC DISPATCH
5.3.5.1.8 Test Status Register (MJMP)

The contents of the status register may be tested with the Macro Jump dispatch by specifying
#JMPCNTL(2-0)=111. This is indicated by

MJMP(oneaddr,zeroaddr)

appearing in the MICASM statement for a microinstruction. The MJMP dispatch tests eight
possible conditions of the Status Register, indicated by the 3 bits in IR(2-0). If the condition is
true, control transfers to oneaddr. If the condition is not true, control transfers to zeroaddr. The
conditions tested are indicated in Figure 5-42.

CONDITION TESTED

IR(2-0) sTC STSB STEZ COMMENT
0 0O X X X Unconditionally Jump
0 0 1 X 1 X Jump if Negative
010 X X 1 Jump if Zero
o1 1 1 X X Jump if Carry

100 X o] o] Jump if Positive

1 0 1 X (o] X Jump if Positive or Zero
110 X X 0 Jump if Not Zero

11 1 0] X X Jump if No Carry

FIGURE 5-42 — MACRO JUMP CONDITIONS
The Xs in the Condition Tested column indicate don’t care conditions.
The result of the condition test is placed in Bit O of #JMPADDR to form the new

microinstruction address. The address oneaddr must be the odd address immediately following
zeroaddr, as shown in Figure 5-43.

5-50

CONTROL ROM

ZEROADDR CONDITION FALSE NEXT MICROINSTRUCTION
ADDRESS FOR:
ONEADDR CONDITION TRUE MJMP (ONEADDR, ZEROADDR)

FIGURE 5-43 — MJMP DISPATCH

The MJMP dispatch is used in the microcode of the TMS7000 Standard Instruction Set to
implement the conditional branch instruction.

5.3.6 Reset Operation

When the RESET pin is asserted externally, the PMC asserts the RST signal on the C Bus
between the PMC and CPU. The entry-point logic immediately forces the next microinstruction
address to be >FF. Unlike the normal interrupt facility, the microcode does not poll the RST line;
rather, the microinstruction at CROM address >FF is unconditionally forced to be the next
microinstruction executed.

In the TMS7000 Standard Instruction Set, the sequence of microinstructions executed upon

reset fetch a subroutine entry point address at address >FFFE in memory (in the on-chip ROM)
and branch to the subroutine.

5-51

5.52

6. DESIGN AIDS
6.1 INTERFACING THE TMS7000 TO PERIPHERAL AND MEMORY DEVICES
6.1.1 Introduction

All TMS7000 family devices feature 32 pins which can be used for general purpose /0.
However, several of these pins may be reconfigured to form an off-chip memory expansion
bus. This reconfiguring allows the microcomputer to reference up to 64K bytes of ROM, RAM,
or other peripheral devices. Two sample designs are presented which interface external
peripheral and memory devices to the TMS7000.

All TMS70XX™ devices are software compatible and differ only in special hardware features
such as on-chip ROM size, extra timers, serial ports, etc. The timing data of the devices used in
the two sample circuits are listed in Table 6-1. The timing information is taken from the data
manual of that particular device. The timing data specified for the TMS70XX assumes a /4
clock option and a 10 MHz input clock frequency. Timing data for a 9 MHz clock was
interpolated by multiplying the values specified in the data manual by 10/9. Refer to the timing
diagram in Figure 6-1.

TABLE 6-1 — TIMING DATA FOR SAMPLE CIRCUITS

TMS70XX(U3)
TIMING DATA (-4 OPTION)

PARAMETER TEST CONDITIONS MIN MAX | UNIT

td(A-D) Access time, data in from valid address = 9 MHe 444 522 ns
f = 10 MHz 400 470
B —_ f = 9 MHz 172 211

t4(EL-D) Data-in after ENABLE falling = 10 MHz 155 190 ns
—_— . f= 9MHz 67 94

td(EH-AF) ENABLE rising to next address drive 10 Mnz 50 85 ns
—_ — f = 9 MHz 44 111

th(EH-RW) R/W hold after ENABLE rise f ~ 10 MHz 40 100 ne

th(EH-D) Data-in hold after ENABLE rise f= 9 MH: 0 ns

f = 10 MHz 0

th(EH-Q) Data-out hold after ENABLE rise f= 9MH: 72 89 ns
f = 10 MHz 65 80

td(Q-EH) Data-out valid before ENABLE rise = 9MHe 255 322 ns
f = 10 MHz 230 290

* TMS70XX refers to all family devices except as noted.

6-1

TABLE 6-1 — TIMING DATA FOR SAMPLE CIRCUITS (CONTINUED)

from enable to any output (2-levels of logic)

TMS9918A(U5)
TIMING REQUIREMENTS
PARAMETER NOM | UNIT
tsu(D-WH) Data setup time before CSW high 100 ns
th(wH-D) Data hold time after TSW high 30
SWITCHING CHARACTERISTICS
PARAMETER TYP MAX | UNIT
ta(CSR} Data access time from (?—ﬁ low 100 150 ns
tPVX Data disable time after CSR high 65 100
TMS2516-35(U11)
SWITCHING CHARACTERISTICS
PARAMETER TYP MAX | UNIT
ta(A) Access time from address 250 350
ta(s) Access time from chip select 120 ns
tdis(S) Output disable time from chip select during read mode only 100
TMS4016-25(U10)
TIMING REQUIREMENTS
PARAMETER MIN MAX | UNIT
tsu(D) Data setup time 100 ns
th(D) Data hold time 10
SWITCHING CHARACTERISTICS
PARAMETER MIN MAX | UNIT
ta(A) Access time from address 250
ta(s) Access time from chip select low 120 ns
tdis(S) Output disable time after chip select high 80
74LS00(U1), 74832(U2), 74LS373(U4), 74LS245(U6),
7408(U7), 74LS04(U8), and 74S138(U9)
SWITCHING CHARACTERISTICS
PARAMETER TYP MAX | UNIT
tpd 74LS00(U1) propagation delay time 10 15 ns
tpd 74S32(U2) propagation delay time 4 7 ns
tpd 74LS373(U4) propagation delay time 12 18 ns
tpd 741.S245(U6) propagation delay time 8 12 ns
tpLZ 741L.S245(U6) output disable time from low level 15 25 ns
tpd 7408(U7) propagation delay time 17.5 27 ns
tpd 74LS04(U8) propagation delay time 10 15 ns
745138(U9) propagation delay time, high-to-low level
tPHL from enable to any output (2-levels of logic) 7 " ns
745138(U9) propagation delay time, low-to-high level
tPLH 5 8 ns

6-2

EXTERNAL READ EXTERNAL WRITE RAM READ INTERNAL READ

r—tecy—

| M tw(cL)
| tw(CH)

Lo
CLKOUT (B7) !
|
|

|
| —| f———F ta(cH-eD
—~ 1 ta(CH-4L)

~ L{-—f— tw(JH)

ALATCH (B4) j &l E /—\ /_\

-—l F—% td(AH-JL) N
+— ¢ >
L/ HI 7
HI ADDR (D0-D7) |ESS [HI ADDR % HI ADDR ALDR & HI ADDR
g | 1
— ;‘4 thea-an)| |
i td(AL-JL) —'} th(EH-D) -~ th(EH-Q)
], « \ c:// U
oata []6 5\ DATANL LS AbG LO-
LO ADDR (CO-C7) 198 8 DATA OUT
out P4= IN 190 ADDR
A7 | Y N

I
-—L'E(./‘\—o)——# ~ t;-l—'a(tan—lml |
: KEL-D) :
| F—taar-tn | [tda-en
I\l

ENABLE (B6)

| N
| = I tner-rw) |
_"ll F—tarw-u0) I | }‘—td(A—EH)__‘l

— \ [

FIGURE 6-1 — TMS70XX READ AND WRITE CYCLE TIMING

6-3

6.1.2

6.1.2.1

6-4

Peripheral Expansion Mode Example

The schematic in Figure 6-2 is a TMS70XX — TMS9918A VDP (Video Display Processor) logic
design using a minimum number of parts. The TMS70XX is configured for the Peripheral
Expansion Mode, so only the C port and half of the B port are dedicated to the TMS9918A
memory map interface. The C port becomes the multiplexed address/data bus and the upper
nibble of the B port becomes the interface control bus. A 9 MHz crystal is used for the 70XX
because the read access time of the TMS9918A is too long for a 70XX running at the full speed
of 10 MHz (with divide by 4 clock option). The A port, D port, and the other half of the B port
(lower nibble) of the 70XX remain available as |/O ports for other system functions. The A port
is input only (1/0 on the 7041), the D port is I/0, and the lower B port nibble is output only. U4
latches the 8-bit address from the address/data bus during read and write memory cycles. U6
is a bidirectional data buffer which is necessary for a fast disable time of read data on the
address/data bus before the next processor read/write cycle. A very simple address decode is
accomplished with U1 and U2.

There are 246 bytes of external memory mapped addressing possible with the TMS70XX in
Peripheral Expansion Mode (238 bytes for the 704 1). A complete address decoding scheme is
not necessary because the TMS9918A is the only peripheral device depicted in this design.
Eight address lines (A7 - AO) are available in the Peripheral Expansion Mode and three of these
are needed for address decoding in this application. The MODE input pin of the TMS9918A is
used to decode the two separate memory addresses it requires. A5 is used to enable write
cycles to the TMS9918A and A6 is used to enable read cycles from the TMS9918A. Separate
addresses are used for VDP read and write because of the read-before-write nature of many of
the 70XX instructions (see paragraph 6.1.4, Software Considerations). The TMS9918A
select starts at >0120 and >0140 and will not interfere with any of the dedicated or reserved
peripheral file addresses of the 70XX. AO is connected to the MODE input of the TMS9918A.
The four 16-bit addresses are decoded as follows.

A15 A8 A7 AO
0000 0001 XO01X XXXO
0000 0001 XO01X XXX1 Wirite only addresses (X = don't care)

0000 0001 X10X XXXO
0000 0001 X10X XXX1 Read only addresses

Read Cycle Timing For The Peripheral Expansion Mode
In a TMS70XX read cycle, the read data from the TMS9918A should be available as soon as
172 ns (td(EL-D)) after ENABLE signal falls low. The TMS9918 will deliver data 150 ns

maximum from CSR low. The minimum access time calculated for this circuit is:

td(EL-D) = Maximum delay time from ENABL E low to read data valid
td(EL-D) = ta(CSR) + tdpU2 + tpdus = 150 + 7 + 12 = 169 ns

6.1.2.2

As mentioned earlier, U6 is a bidirectional data buffer which is necessary for a fast disable time
of read data on the address/data bus before the next processor read/write cycle. The minimum
ENABLE rise to the next address drive time of the TMS70XX running at 9 MHz (td(EH-AF)) is
67 ns, so the design goal is to have a data disable time of less than or equal to 67 ns in the read
cycle. The TMS9918’s data disable time from CSR high (tpvx) is at maximum 100 ns. U6 is
used to solve this possible data bus conflict problem. The maximum data bus disable time is
calculated next.

td(EH-AF) = Maximum time data bus is tristate after ENABLE high
td(EH-AF) = tpdU2 + tpdU7 + tPLZU6 = 7 + 27 + 25 = 59 ns

it is necessary to ensure that the R\W signal does not change state before any buffers driving
the data bus are disabled. For example, if the U6 bidirectional buffer were enabled (G low) and
the RW signal changed state (DIR low-high or high-low) then the previous buffer inputs would
become buffer outputs and cause possible bus conflict in the system. The RMW signal from the
TMS70XX is held in a steady-state for at least 44 ns after ENABLE goes high (th(EH-RW))-
Consequently, the G signal to U6 must be high within 44 ns of ENABL E going high.

th(EH-G) = Maximum time G goes high after ENABLE rise

th(EH-G) = tpdU2 + tpdU7 =7 + 27 = 34ns
Write Cycle Timing For The Peripheral Expansion Mode
In a Write Cycle the TMIS9918A expects the write data from the TMS70XX to be valid for
approximately 100 ns (tsy(D-WH)) before the CSWsignal goes inactive (high). The circuit will
easily meet this requirement as shown next.

tsu(D-WH) = Minimum time data is valid before CSW high

tsu(D-WH) = (td(Q-EH) + tpdU2) — tpdU6 = (255 + 4) — 12 = 247 ns

The TMS9918A expects a data hold time of about 30 ns (th(wH-D)) after CSW rises. The data
hold time in this circuit is calculated as follows.

th(WH-D) = Minimum time data is valid after CSW rise

th(WH-D) = tpdU7 + tPLZU6 = 17.5 + 16 = 32.5ns

6-5

31dWVX3 3QOW NOISNVdX3 TVHIHdIN3d — 2-9 3UNDI4

N T HN
I wm T ﬁ e T
L
-9
¥IO . V
00V ov-LY
me 0a Mu Y9 —5av)
Yk 9 lew o I o/
€8
e LA v8 cav sV < (o-c)g og-¢9
€a Tav 318V IIVAY
€ad
a0 (N WV
P sa_ |7 Lal_59v) A 0-0)a V 0a-.a
9a 9Gv)
8v ,
0ad s 88—
SWYY SYZSIvL N
ol on (0-21av
viva
318VN3/08
/4aav -318vN3 A\M\mm
Gm— M
Rduwoﬁﬂlo
o -9
om 2 ST nwhisvm
zesvL v > %[oav q
p— 00SL w %% %Iy +
Swvy -Ms2 zn oe ae p—— 20
v zav \
woud 00S1¥L or av €2
viva -4so & loe o v [1>
vy . vav [|.o
v 1° 99 4y
00S1¥L o a S S
av sav
~—108 asp— = 9
VBL66SIWL ELESTVL XXOLSWL
sn vn €n

(V6266/v8Z66/V8LE6SIWL OL XXOLSWL
I1dNVX3 JAOW NOISNVAX3 TvH3IHdIH3d

6-6

6.1.3

6.1.3.1

Microprocessor Mode Example

In the Full Expansion Mode and the Microprocessor Mode, all 16-bits of addressing is available
on the C and D ports of the TMS70XX. The on-chip ROM (if any), RAM, and limited 1/O of the
70XX can still be used in the Full Expansion Mode, but the ROM is disabled in the
Microprocessor Mode and its address space is available externally.

The schematic in Figure 6-4 is an example of a memory interface to a 10 MHz TMS70XX
operating in the Microprocessor Mode. The Mode Control (MC) pin is tied to VCC to place the
70XX in this mode. The D port becomes the most significant 8-bit address bus (A15 — AS8).
The C port becomes the multiplexed least significant 8-bit address bus (A7 — AO) and full 8-bit
data bus, just as in the Peripheral Expansion Mode. The memory control signais are brought out
on the upper nibble of the B port, just as in the Peripheral Expansion Mode. The A port remains
an input only port (/O port on the TMS7001/TMS7041) and the lower nibble of the B port
remains an output only port.

The least significant 8-bits of the 16-bit address (A7 — AO) are latched into U4 by the ALATCH
from the address/data bus during read/write memory cycles. U6 is a bidirectional data buffer
which is necessary for a fast disable time of read data to the 70XX before the next read/write
cycle. A full address decode is accomplished with U8 and U9. Eight memory select lines
(SELO to SEL 7) are generated by U9 and are each individually activated on an address block
of 2048 bytes. Figure 6-3 lists the address range decoded by each select pin.

Pin Address Range

SELO >CO00 — >C7FF
SEL1 >C800 — >CFFF
SEL2 >DO0O00 — >D7FF
SEL3 >D800 — >DFFF

SEL4 >EO00 — >E7FF
SEL5 >E800 — >EFFF
SEL6 >FO00 — >F7FF

)]

EL7 >F800 — >FFFF
FIGURE 6-3 — MEMORY ADDRESS DECODE

The example schematic in Figure 6-4 shows a TMS4016-25 static RAM selected by SELO
and a TMS2516-35 EPROM selected by SEL 7. Any combination of ROM, RAM or other
peripheral device could be added into the circuit and enabled by the other SEL pins, provided
that their timing requirements allow them to be interfaced to the TMS70XX.

Read Cycle Timing For The Microprocessor Mode

The minimum address to data access time required by the TMS70XX is 400 ns (t4(A-D)). The
following equation is used to check if U10 and U11 can deliver read data in less than or equal to
400 ns.

td(A-D) = Max read data valid time from address (A10 — AO)

td(A-D) = ta(A)JU10 + tpdU4 + tpdU6 = 250 + 18 + 12 = 280ns
td(A-D) = ta(A)U11 + tpdU4 + tpdU6 = 350 + 18 + 12 = 380 ns

6-7

6.1.3.2

6-8

The minimum ENABLE to data access time required by the TMS70XX is 155 ns (td(EL-D))-
Consequently, the chip select to data access of U10 and U11 must be less than or equal to 155
ns.

td(EL-D) = Maximum delay time read data is valid from ENABLE low

td(EL-D) = ta(A)U10 + tPHLU9 + tpdu6e = 120 + 11 + 12 = 143 ns

td(EL-D) = ta(S)U11 + tPHLU9 + tpdus = 120 + 11 + 12 = 143 ns
The minimum ENABLE rise time to the next address drive time of the TMS70XX is 60 ns (
td(EH-AF)). The data bus is not to be driven by any external devices within this time: this is the
main purpose of U6.

td(EH-AF) = Maximum time data bus is tristate after ENABLE high

td(EH-AF) = (2 X tpdu8) + tPLZU6 = (2X 15) + 25 = 55ns
As mentioned earlier, to avoid any possible bus conflict, the data direction of U6 must not be
reversed by the RWsignal while this device is enabled (G low). Therefore, G of U6 must be high
within the time ENABL E goes high and RW changes state.

th(EH-G) = Maximum time G goes high after ENABLE rise

th(EH-G) = 2 X tpqug = 2X 15 = 30ns
Write Cycle Timing For The Microprocessor Mode
The output data from the TMS70XX must be valid long enough before ENABLE rises to
satisfy the TMS4016-25 RAM. The following equation derives the minimum time that write
data will be valid to the memory devices while they are selected.

tsu(D)U10 = Minimum time data is valid before S rise

tsu(D)U10 = (td(Q-EH) + tPLHUY) — tpdU6 = (230 + 5) — 12 = 223 ns
A tsu(D)U10 of 223 ns easily excedes the minimum data setup requirement of 100 ns for the
TMS4016-25 RAM. The 4016 requires a minimum data hold time of 10 ns after S rises (
th(D)U10). so the value for th(D-S) must be greater than or equal to 10 ns. The purpose of the
two inverters (U8) going to the G input of U6 is to ensure sufficient data hold time for the RAM.

th(D)U10 = Minimum data hold time to U10 after S rise

th(D)U10 = [(2 X tpdus) + tpLzU6] — tPLHU9 = [(2X 10) + 15] — 8

th(D)U10 = 27 ns

31dWVX3 JAOW HOSSID0UdOUDIN — ¥-9 IUNOI

(WvH 9L0YSWL ONY WOYHd3 9LSZSIWL OL XXOLSWL)

31dWVYX3 JAOW HOSSIOOUdOHIIW

((0-£1a H un...
18
= oav) ZHW 0L
T4wod/ad z8 oV 2 0
OV ™ ov €8
A G+ —]ddA W T va zav A
o8 £av) 20 &—{ow
vav)
w“ sav) 0Ly
o sav_ mo_
PS av Y 3ravuvav
{ Toen
avzSIvL an
an v0SIWL T oa
b— 4
4 82 { 6v MM
Tomas 4 vi—{ otv ea
SE9LSZSWL oA 1TV
tn TS oA 8 Ziv va
ES 2 sa
———deaA EIV
- -€13S ZA 19 v 9a
AN
-M e L > sret— StV ta
- -s 1 doa YOSIPL I1avNa/98
9 Z013S -378VN3 -
OV ov Y BELSYL) Wais
_.<|4J en Z Yy M
v
v T doo -0 HOLVV/vE
N
e LM B R My :opwm_« u I
N——z0a —
_—— : M« A —v %z % av L
T Ay v) — oe ae T (2
N e R v v
soa v - €V €av
va LY) ——v—10¢ as TGV - %)
sa |°°¢ 8Y[Tav ~ 09 a9 sav = %}
3 |00 8Y[TEv) . wu oo ar T 99
——7g 1809 OV Grv) — o8 L A—)
sz9 opSiiL N Gorv L ELESTOL XXOLSWL
vn en

6-9

6.1.4

6-10

Software Considerations

The TMS70XX microcomputer features a variety of instructions which allow easy access to
external memory mapped devices. The address space from >0100 to >O1FF serves as the
peripheral file. A special set of instructions are dedicated to the peripheral file for more efficient
I/0 communication to peripheral devices memory mapped in this space. The Peripheral
Expansion Mode of the 70XX allows this space to be available externally. All instructions
dedicated to the peripheral file use the letter ‘P’ at the end of the opcode mnemonic. These
instructions are MOVP, BTJOP, BTJZP, ANDP, ORP, and XORP (see Section 3.3.3.2).

As indicated previously in the Peripheral Expansion Mode example, separate addresses are
used for reads and writes. Due to processor design, many of the TMS70XX instructions
perform a read-before-write cycle on the destination operand. This is true with the peripheral
file instructions that would most likely be used to write to the TMS9918A:

MOVP A,Pn

MOVP B,Pn

MOVP %IOP,Pn

where:

A,B = accumulators

n = peripheral file number
IOP = immediate data value

These will read the peripheral file address before writing to it. If the CSWand CSR pins of the
TMS9918A are decoded at the same address, a false read would occur when using these
instructions. Therefore read and write addresses must be decoded separately. There is a
method to allow the use of the same address for reading and writing in the TMS9918A
example. This method is to use an instruction that does not read-before-write on the
destination address.

STA @LABEL

STA @LABEL(B)

STA *Rn

where:

LABEL = 16-bit destination address
B = index register

n = register pair number

The instructions listed above will not perform an unnecessary read cycle on the destination
address before writing to it. The TMS9918A address decode could be simplified by using just
two address lines (A5,AQ) instead of three (A6,A5,A0) when using these instructions.

6.2

6.2.1

A program can be executed from anywhere in the TMS70XX 64K byte address space where
memory is available. This includes the 128 byte register file which is located at >0000 to
>007F. Caution should be taken if a program is allowed to execute in the peripheral file address
space because some of these locations are reserved for special on-chip functions. The Full
Expansion Mode and Microprocessor Mode allow the use of additional external memory. The
Microprocessor Mode example shows that RAM can be added externally as well as EPROM. A
program can write to and read from this RAM by using the extended instructions LDA and STA.
Direct, indirect, and indexed addressing modes are possible with the following instructions.

LDA @LABEL
LDA *Rn

LDA @LABEL(B)
STA @LABEL
STA *Rn

STA @LABEL(B)

where:

LABEL = 16-bit source/destination address
n = register pair number

B = index register

The TMS70XX is a versatile single-chip microcomputer that can be reconfigured to address
external peripheral and memory devices. This allows the TMS70XX to meet system
requirements that could not be satisfied with single-chip mode.

SERIAL COMMUNICATION WITH THE TMS7000 FAMILY

This section is intended to assist the TMS7000 family user in performing serial communication
via a UART (Universal Asynchronous Receiver Transmitter) function. It describes the
implementation of the UART function in software using the TMS7040 and with the on-chip
serial port using the TMS7041.

Communication Formats

Serial communications occur in one of two basic formats; synchronous or asynchronous.
These formats are similar in that they both require framing bits to be added to the data to enable
proper detection of the data at the receiving end.

In synchronous format, blocks of data are sent as a continuous string of characters where the
string is preceded and terminated by framing bits; the preceding framing bits are used by the
receiving device to synchronize its clock with the transmitter’s clock.

In asychronous format, as shown in Figure 6-5, each character to be transmitted is preceded
by a START framing bit and followed by a parity bit (if parity is enabled), then one or more STOP
framing bits.

<4——— CHARACTERBITS ———p

MARKING START DO D1 Dn PARITY STOP MARKING
LSB MSB
————3 INCREASING TIME

FIGURE 6-5 — ASYNCHRONOUS COMMUNICATION FORMAT

6-11

6.2.2

6-12

The START bitis a logical zero, or SPACE. It notifies the receiver to start assembling a character
and allows the receiver to synchronize itself with the transmitter.

A PARITY bit is an additional bit added to a character for error checking. The PARITY bit is set to
‘0’ or “1” in order to make the number of ‘1’s in the character (including the PARITY bit) even or
odd depending on whether even or odd parity is selected.

The STOP bit is a logical one or MARK. One or more STOP bit(s) are added to the end of the
character to ensure that the START bit of the next character will cause a transition on the
communication line and give the receiver time to catch up with the transmitter if its basic clock
happens to be running slightly slower than that of the transmitter.

Design Constraints For The Software And Hardware UARTS

The purpose of this design is to implement the UART function using the TMS7000 family.
There are two main routines to be written: the ‘transmit’ routine that transmits the character in
the A Register and ‘receive’ routine that receives the character and stores it in the A register.
The routines for the software UART will be called SWXMIT and and SWRCVD:; likewise, the
routines for the hardware UART will be called HWXMIT and HWRCVD. Both the software and
hardware UART implementations use the same 1/O pins as shown in Figure 6-6.

+5V
2kQ
15241 75188
6
g3 |BLTX TN 9 R
i % 5
‘LS241 75189
RX 5 15 6
as 16 4 2
70XX
‘LS241 75188
4 DTR 17 2
B1 N3 3 6
| 2
25PIN
_ 1s2a 75189 CONNECTOR
3
Az | 8DSR__7 13 1 20
+12V
t 2.2kQ
8
+12V
2.2k
9
-12Vv
2.2k
10
1
f 7

FIGURE 6-6 — I/0 INTERFACE

6.2.2.1

Port A5 (pin 16) and Port B3 (pin 37) are used for receiving data and transmitting data. Port A2
(pin 8) and Port B1 (pin 4) are used for the inputting and outputting of the handshaking signals.
Table 6-2 defines the pin assignments and the function of each pin.

TABLE 6-2 — 1/O PIN ASSIGNMENT

SIGNATURE PIN 110 FUNCTION
A2 8 | Data Set Ready (DSR)
A5 16 | Receive Data (RXD)
B1 4 (0] Data Terminal Ready (DTR)
B3 37 (0] Transmit Data (TXD)

The flowcharts together with the complete program listings for the XMIT and RCVD routines
are included later in this section.

Design Of The Software UART For The TMS7040

Listed below is the register assignment for the software UART:

REGISTER

R34 =BDCNT1
R35=BDCNT2
R36 =HFBAUD
R37 =MODE
R38 =BITCNT
R39 =BITIME
R40 =DLAYR1
R41 =DLAYR2
R42 =UATREG
R43 =TMP
R44 =STAT
R45 =RCHAR
R46 =SHFCNT

NAME

BIT COUNTER
BIT COUNTER
HALF BAUD RATE
MODE REGISTER

COUNTER INITIALIZER

TIMER INITIALIZER
DELAY LOOP1
DELAY LOOP2
UART REGISTER

TEMPORARY REGISTER

STATUS REGISTER

RECEIVED CHARACTER

SHIFT COUNTER

FUNCTION

STORE DELAY CONSTANT

STORE DELAY CONSTANT

STORE HALF BiT DELAY CONSTANT
SET MODE OF OPERATION

FOR # OF BITS TO BE XMITTED

FOR DELAY

USED IN DELAY LOOPING

USED IN DELAY LOOPING
TEMPORARY REGISTER
TEMPORARY REGISTER

FOR CHECKING PARITY ERROR
STORE THE RECEIVED CHARACTER
FOR BIT POSITION ADJUSTMENT

Each register has been assigned a name and its function is listed beside it.

* R34 and R35 provide the time constants for looping in the delay subroutine.

* R36 provides the delay constant for sampling the start bit at the half bit position.

. R37 controls the number of STOP bit(s), odd/even/no parity and the number of bits in the

character.

° R38 controls the number of bits to be transmitted.

® R39 provides the delay constant for time compensation.

. R40 and R41 are used in the actual delay looping in the delay subroutine. They are loaded
from R34 (BDCNT1) and R35 (BDCNT2) at the beginning of the delay subroutine.

6-13

6-14

* R42 contains a parity error flag at bit O.

®* R45is used to store the received character.

* RA46 s used to make the bit position adjustment so that the received data is right-justified.
Mode Register R37 = MODE

MODE is accessed through R37 in the register file. It describes the character format of the
software UART.

R37 =MODE
7 6 5 4 3 2 1 (o]
CHAR1 |CHARO| PDIS | STOP [o] 0 0 PODD
< > l—— O = Even Parity
1 = Odd Parity
0 = One Stop Bit

1 = Two Stop Bits

0O = Parity Enabled
1 = Parity Disabled

00 = 5 bits/Character
01 = 6 bits/Character
10 = 7 bits/Character
11 = 8 bits/Character

Parity Odd (PODD) Bit O — If this bitis set to a 1, then odd parity is is selected. The parity bit will
be set to O or 1 in order to make the total number of 1’s in the character (including the PARITY
bit) odd.

Bit 1 to Bit 3 are reserved and must be set to O’s.

Number of Stop bits (STOP) Bit 4 — This bit determines the number of STOP bit(s) to be sent.
Setting this bit to a O selects one STOP bit and setting it to a 1 selects two STOP bits.

Parity Disable (PDIS) Bit 5 — If this bit is set to a 1, then no PARITY bit is generated during
transmission or expected during reception.

Number of Bits per Character (CHARO, 1) Bit 6,7 — A character is programmable to 5, 6, 7 or 8
bits. Characters less than 8 bits are right-justified.

Status Register R44 = STAT

STAT is accessed through R44 of the register file. It is used for determining the parity error in
the received character.

R44 =STAT

7 6 5 4 3 2 1 (0]

X X X X X X X PARE

L o=nNo Parity Error
= Parity Error

Parity Error (PARE) Bit O - This bit indicates that a parity error is encountered on the received
character if this bit is set to a 1 after a character is received.

SOFTWARE UART ROUTINE DESCRIPTION

The details of the routines for the software UART can be best understood by going through
Figure 6-7 , 6-8 and the program listings in this section.

In the SWXMIT routine, the character is contained in the A Register. This character is to be
transmitted through the transmit line (TXD) according to the format specified in the MODE
(R37) register.

The following is a portion of the SWXMIT routine listing:

0008 XMIT1 EQU >08 TRANSMIT ‘1’
MASK (OR)
OOFD RTS EQU >FD READY TO SEND (AND)
0004 DSR EQU >04 DATA SET
READY (TEST)
0004 UARTIN EQU P4 PORT A-UART
INPUT (1)
0006 UARTOT EQU P6 PORT B-UART
OUTPUT (1
0032 FO06 C8 SWXMITPUSH B SAVE CONTENTS
OF THE B REG.
0033 F007 A4 ORP %XMIT1,UARTOT PLACE A ‘MARK’
ON XMIT LINE
FOO8 08
FO09 06
0034 FOOA A3 ANDP %RTS,UARTOT ASSERT ‘RTS’
FOOB FD
FOOC 06

0035 FOOD A6 WAIT BTJOP %DSR,UARTIN,WAIT WAIT FOR
HANDSHAKING

FOOE 04
FOOF 04
FO10 FC

6-16

The SWXMIT routine listing starts by saving the B Register value on the stack so that the value
can be restored after the execution of the routine.

Symbols refer to SWXMIT flowchart in Figure 6-7.

A

It places a‘MARK’ or 1 on the transmit line (TXD) and then places a O on the
output handshaking line (DTR) informing the receiving end that it is Ready
To Send the character. It waits for the input handshaking line (DSR) to be
pulled to a O by the receiving end. Refer to SWXMIT listing immediately
above.

Once it receives a O, it starts initializing the Bit Counter (R38) and the Timer
Initializer (R39).

It jumps to ‘LOOP2’ to send out the START bit. After calling the delay
subroutine, it jumps back to ‘LOOP1’ and starts sending the character bits.
The total number of bits to be sent is determined by Bit Counter (R38).

After all the character bits have been transmitted, it tests the MODE (R37)
register for parity. If parity is enabled, it will output the parity bit, otherwise;
it jumps to the STOP bit and outputs the number of STOP bit(s) specified in
bit 4 of MODE (R37).

After sending the STOP bit(s), it places a 1 on the output handshaking line
(DTR) and restores B-register.

PARITY

ENABLED
?

START

SAVE B REGISTER
PLACE A OUTPUT
‘MARK’ ON PARITY P D
XMIT LINE BIT
AND ASSERT ‘RTS'
A< l
OUTPUT
HANDSHAKING sToP ¢
? BIT(S)
L .
_
INITIALIZE DISASSERT
B < BIT COUNTER ‘RTS’ e
AND TIME AND RESTORE
COMPENSATION B REGISTER

OUTPUT START
C < BIT THEN
DATA BITS

FIGURE 6-7 — SWXMIT ROUTINE FLOWCHART

6-17

6-18

In the SWRCVD routine, the character is received through the receive line A5(RXD) and stored
in the A Register.

The following is a portion of the SWRCVD routine listing:

0113

0114

0115

0116

0117

0118
0119

0120
0121

O0O0FD
0020
0004

0006

A3
FD
06
A7

20
04
FC
A6

20
04
FC
32

24
00

00
CA
FC

RTS EQU
DIN EQU
UARTIN EQU
UARTOT EQU

ANDP

MARKCK BTJZP

STRBIT BTJOP

Mov

HERE2 NOP

NOP
DJNZ

>FD
>20
P4
P6

%RTS,UARTOT

READY TO SEND (AND)
DATA IN (TEST)
PORT A-UART

INPUT (1)
PORT B-UART

OUTPUT (1)
ASSERT ‘DTR’

%DIN,UARTIN,MARKCK LOOP UNTIL

%DIN,UARTIN,STRBIT

HFBAUD,B

B,HERE2

SAMPLE START BIT AT HALF BIT

A6

20
04
F2

BTJOP

%DIN,UARTIN,STRBIT

MARK OCCURS

LOOP UNTIL
SPACE OCCURS

INITIALIZE
COUNTER

TIME
COMPENSATION (4)

(4)
WAIT HALF A BIT (7 + 2)

BRANCH IF
FALSE START

Symbols refer to SWRCVD flowchart in Figure 6-8:

A

It starts by saving B-register, initializing the Bit Counter (R38) and the Shift
Counter (R46).

Then, it places a O on the output handshaking line (DTR-) informing the
transmitting end that it is Ready To Receive the character. It checks the
receive line (RXD) for ‘MARK’ or 1. After this condition is satisfied, it waits
for the START bit to occur. Once the START bit is detected, it waits half a bit
and samples again. Refer to the listing immediately above.

If the START bit is valid after half bit, it starts assembling the character bits
after calling the delay subroutine for one bit delay. The received character is
stored in RCHAR (R45).

It checks for a parity error and sets the STAT (R44) accordingly. The
character received is also made right-justified.

Then, it places a 1 on the output handshaking line (DTR-) and moves the
character from R45 to A-register. Finally it restores B-register.

6-19

6-20

A<

B <

C<

START

\ 4

SAVE B REGISTER
INITIALIZE BIT
COUNTER AND
SHIFT COUNTER

ASSERT
‘DTR’

[
INPUT A
START BIT
?

START

BIT VALID

AFTER HALF
BIT

ASSEMBLE
THE
CHARACTER
BITS

PARITY
ENABLED
?

CHECK
PARITY AND
SET THE
STATUS REGISTER

:

MAKE THE
NECESSARY #
OF SHIFTS
FOR
ADJUSTMENT

:

DISASSERT
‘DTR’

STORE THE
RECEIVED
CHARACTER IN
A REGISTER
AND RESTORE
B REGISTER

FIGURE 6-8 — SWRCVD ROUTINE FLOWCHART

FD

CALCULATION OF THE DELAY CONSTANTS AND FORMULAS

Figure 6-9 describes how the delay works and how the bit time is
calculated.

Let T = time per bit in micro seconds.

MARKING START BIT CHARACTERBITS

—T—

FIGURE 6-9 — DELAY CONSTANTS CALCULATION

For instance, if the microcomputer is operating at the crystal/clockin frequency fosc = 10 MHz
with the divide by 4 option (fosc = 5 MHz with the divide by 2 option) as shown in Figure 6-9.
The clockout cycle time tc(c) = 400 n seconds. Table 6-3 shows the total number of cycles
needed in the delay loop for the corresponding baud rates.

TABLE 6-3 — CYCLE CALCULATION

TIN # OF CYCLES TOTAL # OF CYCLES
BAUD RATE MICRO SEC NEEDED IN DELAY LOOP*
300 3333 8333 8221
600 1667 4167 4055
1200 8333 2083 1971
2400 417 1042 930
4800 208 521 409
9600 104 260 148

*NOTE: There are 112 cycles needed to manipulate the next bit to be sent out.

Refer to the delay subroutine in the SWUART program listing at the end of this section. The
following is a sample of that program.

OF CYCLES PER
INSTRUCTION
DELAY MOV BDCNT2,DLAYR2 INITIALIZE OUTER COUNT 10
ENTRY MOV BDCNT1,DLAYR1 INITIALIZE INNER COUNT 10
HERE1 DJNZ DLAYR1,HERE1 INNER COUNT 9+2
DJNZ DLAYR2,ENTRY OUTER COUNT 9+2
RETS 7

Let A = Value in BDCNT1 and B = Value in BDCNT2 where A and B range from 1 to 255.
Therefore, total number of CYCLES in the delay subroutine

=(11A+21)B+17-2(B+1)
= 11AB+19B+15

6-21

For example, if the total number of cycles in the delay subroutine = 4055, A = 35andB = 10
are needed.

A simple program can optimize the value of A and B to provide the correct number of delay
cycles.

Values of A and B with different crystal frequencies are provided in Table 6-5 at the end of this
section.

Figure 6-10 describes how the start ‘half bit’ works and is calculated. Listed below is a sample
of the start bit detection program found in the SWRCVD routine.

OF CYCLES PEI
INSTRUCTION
STRBIT BTJOP %DIN,UARTIN,STRBIT LOOP UNTIL START BIT OCCURS 12
MOV HFBAUD,B INITIALIZE COUNTER 8
HERE2 NOP TIME COMPENSATION 4
NOP TIME COMPENSATION 4
DJNZ B,HERE2 WAIT HALF A BIT 7+2
BTJOP %DIN,UARTIN,STRBIT SAMPLE AGAIN, BRANCH IF
FALSE START BIT
MARKING ‘0’ detected Sample again
here at
l hai bit
START BIT CHARACTERBITS

FIGURE 6-10 — START BIT DETECTION

Once the START bit is detected, the program will wait half a bit time and sample again as
shown in Figure 6-10. This sequence provides false start bit rejection and also locates the
center of bits in frame for assembling the character. Refer to Figure 6-8 SWRCVD flowchart -
symbol B. Table 6-4 shows the number of cycles needed for a half bit delay.

TABLE 6-4 — HALF BIT CYCLES CALCULATION

OF CYCLES FOR # OF CYCLES NEEDED
BAUD RATE HALF BIT FOR HBAUD DELAY*
300 4167 4147
600 2083 2063
1200 1042 1022
2400 521 501
4800 260 240
9600 130 110

* NOTE: 20 Cycles are used to set up the half bit delay after the start bit is detected.

6-22

Let X = value in HFBAUD where X ranges from 1 to 255.

Therefore, [4+4 + (7 + 2)1X-2 = # OF CYCLES NEEDED FOR HFBAUD DELAY

For example, if the number of cycles needed for a HBAUD delay is 4147, a value of X equal to

244 is needed.

X values with different crystal frequencies are provided in Table 6-5.

The crystal-dependent constants (BDCNT1, BDCNT2 and HFBAUD) used in the software
UART are given in Table 6-5. These constants must be loaded into the corresponding registers

and the MODE register must be set before SWXMIT or SWRCVD is called.

TABLE 6-5 — CRYSTAL-DEPENDENT CONSTANTS FOR THE SOFTWARE UART

BAUD RATE BDCNT1(A) BDCNT2(B) HFBAUD(X)
300 18 D F4
600 23 OA 79
1200 06 17 3C
2400 1A 03 1E
4800 22 01 OE
9600 OA 01 07
CRYSTAL-DEPENDENT CONSTANTS GIVEN IN HEX:
10MHz CRYSTAL WITH DIVIDE BY 4 OSCILLATOR
or 5SMHz CRYSTAL WITH DIVIDE BY 2 OSCILLATOR
BAUD RATE BDCNT1(A) BDCNT2(B) HFBAUD(X)
300 1c 14 C3
600 90 02 61
1200 oB oB 30
2400 09 06 17
4800 07 03 oB
9600 02 02 05

CRYSTAL-DEPENDENT CONSTANTS GIVEN IN HEX:
8MHz CRYSTAL WITH DIVIDE BY 4 OSCILLATOR
or 4MHz CRYSTAL WITH DIVIDE BY 2 OSCILLATOR

6-23

6-24

TABLE 6-5 — CRYSTAL-DEPENDENT CONSTANTS FOR THE SOFTWARE UART (CONTINUED)

BAUD RATE BDCNT1(A) BDCNT2(B) HFBAUD(X)
300 23 OA 79
600 06 17 3C

1200 1A 03 1E
2400 22 01 OE
4800 OA 01 07

CRYSTAL-DEPENDENT CONSTANTS GIVEN IN HEX:

5MHz CRYSTAL WITH DIVIDE BY 4 OSCILLATOR

or 2.5MHz CRYSTAL WITH DIVIDE BY 2 OSCILLATOR

BAUD RATE BDCNT1(A) BDCNT2(B) HFBAUD(X)
300 90 02 61
600 oB oB 30

1200 09 06 17
2400 07 03 oB
4800 02 02 05

CRYSTAL-DEPENDENT CONSTANTS GIVEN IN HEX:

4MHz CRYSTAL WITH DIVIDE BY 4 OSCILLATOR

or 2MHz CRYSTAL WITH DIVIDE BY 2 OSCILLATOR

BAUD RATE BDCNT1(A) BDCNT2(B) HFBAUD(X)

300 83 04 AE

600 80 02 57
1200 10 07 2B
2400 1 03 15
4800 02 06 OA
9600 01 02 04

CRYSTAL-DEPENDENT CONSTANTS GIVEN IN HEX:
3.579MHz CRYSTAL WITH DIVIDE BY 2 OSCILLATOR

6.2.2.2

TABLE 6-5 — CRYSTAL-DEPENDENT CONSTANTS FOR THE SOFTWARE UART (CONTINUED)

BAUD RATE BDCNT1(A) BDCNT2(B) HFBAUD(X)
300 80 02 57
600 10 07 2B
1200 11 03 15
2400 02 06 OA
4800 01 02 04

CRYSTAL-DEPENDENT CONSTANTS GIVEN IN HEX:
3.579MHz CRYSTAL WITH DIVIDE BY 4 OSCILLATOR

BAUD RATE BDCNT1(A) BDCNT2(B) HFBAUD(X)
300 1B 11 A1
600 02 40 50
1200 37 02 27
2400 oB 04 13
4800 12 01 09
9600 02 01 04

CRYSTAL-DEPENDENT CONSTANTS GIVEN IN HEX:
3.3MHz CRYSTAL WITH DIVIDE BY 2 OSCILLATOR

BAUD RATE BDCNT1(A) BDCNT2(B) HFBAUD(X)
300 oB oB 30
600 09 06 17
1200 07 03 oB
2400 02 02 05

CRYSTAL-DEPENDENT CONSTANTS GIVEN IN HEX:
2MHz CRYSTAL WITH DIVIDE BY 4 OSCILLATOR
or 1MHz CRYSTAL WITH DIVIDE BY 2 OSCILLATOR

Hardware UART (TMS70X1)

The serial port consists of a receiver (RX), transmitter (TX), and TIMER3 (T3). The complete
functional definition of the serial port is configured by the TMS704 1 software. A set of control
words must first be sent out to the serial port to initialize it, so that it will support the UART
function.

The serial port is controlled and accessed through registers in the peripheral file. The registers
associated with the serial port are shown in Table 6-6.

6-25

6-26

TABLE 6-6 — SERIAL PORT REGISTERS

REGISTER NAME TYPE FUNCTION
P17 SMODE WRITE Serial Port Mode
P17 SCTLO WRITE Serial Port Control-O
P17 SSTAT READ Serial Port Status
P20 T3DATA R/W Timer 3 Data
P21 SCTL1 R/W Serial Port Control-1
P22 RXBUF READ Receiver Buffer
P23 TXBUF WRITE Transmission Buffer

The following diagrams are bit assignments of the peripheral file registers. They are included
here for reference. It is suggested that the reader consult Section 2.7 for a complete
description and explanation regarding their uasge.

Mode Register (SMODE)

SMODE is accessed through P17 in the peripheral file. It is used to control the character format
and type of communications mode (asynchronous or isosynchronous).

P17 = SMODE

7 6 5 4 3 2 1 (o]
STOP SIO |PEVEN | PEN |CHAR1|CHARO|COMM | MULTI |
“——— L

0 = Motorola protocol
1 = Intel protocol

0 = Isosync
communication
1 = Async

communication

00 = 5 Bits/character
01 = 6 Bits/character
10 = 7 Bits/character
11 = 8 Bits/character

1 = Parity enabled
O = Parity disabled
1 = Even parity
0 = Odd parity

O = Serial I/0 mode
1 = Communication
mode

0 = One stop bit
1 = Two stop bits

Serial Control O Register (SCTLO)

SCTLO is accessed through P17 of the perpheral file. The SCTLO register is used to control the
serial port functions, such as transmit and receive enable, clearing of error flags and software

reset.
P17=SCTLO
7 8 4 3 2 (o)
X UR ER X RXEN TXEN

L__ 0 = Transmitter disabled

1 = Transmitter enabled

0 = Receiver disabled
1 = Receiver enabled

1 = Reset error flag
0 = No reset error flags

1 = Reset serial port
0 .= Noreset

6-27

Status Register (SSTAT)

The Status is accessed through P17 of the Peripheral File. It is used for determining the status
of the serial port.

P17 =SSTAT

X BRKDT| FE OE PE TXE |RXRDY | TXRDY

l 1 = TXBUF ready for
character
0 = TXBUF full

1 = RXBUF ready with
character
0 = RXBUF empty

1 = Transmitter empty
0 = Transmitter
written to

1 = Parity error
0 = No parity error

1 = Overrun error
0 = No overrun error

1 = Framing error
0 = No framing error

1 = Break Detected
0 = No break

6-28

Serial Control 1 Register (SCTL1)

The SCTL1 is accessed through P21 in the peripheral file. This register is used to control the
source of SCLK, multiprocessor communications, TIMER3 interrupt, and the TIMER3 prescaler
value.

P17=SCTL1

7 6 5 4 3 2 1 0

X CLK | SLEEP | WU | T3FLG | T3ENB | PRE3 | PRE3

‘——‘__:_b 2-bit prescaler

for TIMER3

O = Disable T3INT
= Enable T3 INT

0 = Reset T3FLG
1 =Setby T3

Control TX
multiprocessor

Control RX
multiprocessor

= External Clock
= Internal Clock

0
1

6-29

6-30

DESCRIPTION

SMODE is only accessible after a RESET operation (hardware or software). The first write
operation to location P17 in the peripheral file, immediately following a RESET, will access the
SMODE register. All subsequent writes to P17 will access the control register (SCTLO).

INT4 is dedicated to the serial port. Three sources can generate an interrupt through INT4: the
transmitter (TX), the receiver (RX), and TIMER3 (T3). The serial port can be driven by an
internal TIMERS or external baud rate generator.

In this HWUART program, the T3 interrupt is disabled and the internal TIMER3 is chosen for the
serial clock. The INT4 service routine as shown in Figure 6-11 must determine which flag
caused the INT4 and take the necessary action. The INT4 vector is stored in memory
addresses >FFF6 and >FFF7.

START

INT4
GENERATED

v

MOVE THE
CHARACTER FROM
RXBUF TO
REGISTER A

l

BY RE())EIVER

1S
INT4
GENERATED

BY TRAN)SMITTER

RETURN FROM
INT4 SERVICE
ROUTINE

FIGURE 6-11 — INTERRUPT 4 SERVICE ROUTINE

1S
TRANSMISSION
COMPLETE
?

6-31

6-32

In the HWXMIT routine (refer to Figure 6-12 HWXMIT flowchart and the listing at the end of
the section) the peripheral file registers are set in the following orders:

1) P5 =ADDR Port A Direction Register

2) P16 =I0CNT1 1/0 Control Register 1

3) P17 =SCTLO Serial Port Control Register O
4) P21 =SCTL1 Serial Port Control Register 1

START ENABLE INTERRUPT

'

CLEAR INT4 FLAG MOVE CHARACTER

FROM A REGISTER
AND ENABLE INT4, TO TXBUF THUS

(ADDR & toCT1) GENERATES INT4
CLEAR ALL
ERROR FLAGS AND
ENABLE THE INTERRUPT 4
TRANSMITTER SERVICE ROUTINE
(SCTLO)

: :

USE INTERNAL

DISABLE THE
HAG. DISABLE TRANSMITTER
INTERRUPT CLEAR INT4 FLAG &
GEII\V'\EBAS'I'EETDPBYOT:! (SI():I‘?I{:)BLE INT4
(SCTL1)- & 10CT1)
. " DISASSERT
ASSERT ‘RTS RTS"

HANDSHAKING
?

FIGURE 6-12 — HWXMIT ROUTINE FLOWCHART

It then places a ‘0’ on the output handshaking line B1(DTR-) informing the receiving end that it
is ready to send. After receiving the ready signal A2(DSR- = O) from the receiving end, it
enables the maskable interrupt, moves the character from the A Register to TXBUF thus
generating an INT4. Upon returning from the INT4, it disables the transmitter and places a ‘1’
on the output handshaking line B1(DTR-).

In the HWRCVD routine (refer to Figure 6-13 HWRCVD flowchart and the listing at the end of
the section) the peripheral file registers are set in the following order:

1) P65 =ADDR Port A Direction Register

2) P16 =I10CNT1 1/0 Control Register 1

3) P17 =SCTLO Serial Port Control Register O
4) P21 =SCTL1 Seriai Port Control Register 1

START ASSERT ‘DTR’ AND
WAIT FOR INT4

SET INPUT HAND-

SHAKING PORT,
CLEAR INT4 FLAG
AND ENABLE INT4

(ADDR & I0CT1)

INTERRUPT 4
SERVICE ROUTINE

I

I

CLEAR ALL
ERROR FLAGS AND
ENABLE THE
RECEIVER (SCTLO)

DISABLE THE
RECEIVER CLEAR
INT4 FLAG &
DISABLE INT4
(SCTLO) & I0CT1)

:

USE INTERNAL CLOCK
RESET T3 FLAG,
DISABLE INTERRUPT
GENERATED BY T3

AND SE
(SCTL1)

I

DISASSERT ‘DTR’

I

ENABLE INTERRUPT

FIGURE 6-13 — HWRCVD ROUTINE FLOWCHART

6-33

where:

6.2.2.3

6-34

In the transmit operation, the maskable interrupts are enabled and a ‘0’ is placed on the output
handshaking line B1(DTR-) informing the transmitting end that it is ready to receive the
character. It waits for the INT4 generated by the Receiver to occur. Upon returning from the
INT4, the routine clears the INT4 flag and disables INT4. Then, it sets the output handshaking
line B1(DTR-)toa 1.

The baud rate generated by TIMER3 is user programmablie and is determined by the value of
the 2-bit prescaler and the 8-bit timer latch. The equation for determining the baud rates for
asynchronous mode is as follows:

¢
64*(P +1)*(L+ 1)

ASYNCHRONOQUS BAUD RATE =

Internal clock frequency
TIMERS prescaler value
TIMERS latch value (to be stored in T3DATA Register)

~ oe
o

For instance, if the microcomputer is operating at the crystal/clockin frequency fosc = 10 MHz
with the divide by 4 option (fosc = 5 MHz with the divide by 2 option), the internal clock
frequency, ¢, equals 2.5 MHz. The corresponding P and L values in hex are listed in Tabie 6-7.

TABLE 6-7 — P AND L VALUES IN HEX

BAUD RATE P L
300 (¢ 81

600 0 40
1200 0 20
2400 0 OF
4800 o 07
9600 0 03
19200 0 01
38400 0 00

The SMODE register, the T3DATA register, and the INT4 vectors (in this case, memory
addresses >FFF6 = FO, >FFF7 = 42) must be set before the HWXMIT or HWRCVD routine is
called.

RS-232-C Interface

The RS-232-C interface consists of SN75188 line drivers and SN75189A line receivers as
shown in Figure 6-6. The A port (input) of the TMS70XX {software and hardware UART) is
used on all data and handshaking receptions. The B port (output) is used on all data and
handshaking transmissions. As shown in Figure 6-6, the receive-data line goes to connector
pin 2 and the transmit-data line to pin 3. The handshaking signal DSR (Data Set Ready) is
received through pin 20 and DTR (Data Terminal Ready) is transmitted through pin 6. This
configuration forms a port suitable for connection to an RS-232-C compatible terminal.

Before the data is transmitted, the TMS70XX will place + 12V through the line driver
SN75188 on connector pin 6 and wait until pin 20 rises above +4 V. After the handshaking
signal is received, the data is then transmitted. If at any time the DSR is not asserted, it will wait
in a loop until it is asserted.

CABLING EXAMPLES

25 PIN CONNECTOR PORT 110
PIN O1 PROTECTIVE GND
PIN 02 DATA RX I
PINO3 DATATX 0
PIN 06 DTR(HANDSHAKE OUTPUT) o
PINO7 SIGNAL GND
PIN 08 +12V
PIN 09 +12V
PIN 10 -i2v
PIN 20 DSR(HANDSHAKE INPUT) l
EIA PORT 820 KSR
PIN 02 RX < PIN 02 X
PIN O3 X _» PINO3 RX
PIN 06 DTR » PINO6 DSR
PIN O7 GND PIN 07 GND
PIN 08 PDCD » PINO8 DCD
PIN 20 DSR ¢ PIN 11 SCA
PIN 04 TO PIN 05

EIA PORT 743 KSR
PIN O1 GND PIN 09 GND
PIN 02 RX < PIN13 X
PIN O3 X 5 PIN12 RX
PIN O7 GND PINO1 GND
PIN 08 PODCO ___ PN DCD
PIN 20 DSR < PIN 15 DTR

I
EIA PORT 810LP
PINO1 GND PIN O1 GND
PIN 03 TX —» PINO3 RX
PIN 06 DTR _» PINO6 DTR
PIN O7 GND PIN O7 GND
PIN 08 PDCD » PINO8 DCD
PIN 20 DSR <& PIN 11 DTR
EIA PORT 990 CARD
PIN 02 RX «—— PIN 03 TX
PIN O3 X _ » PINO2 RX
PIN 06 DTR ___ » PIN20 DSR
PIN O7 GND . PINO7 GND
PIN 08 pocD 3 PIN18 DCD
PIN 20 DSR < PIN 08 RTS

6-35

6.2.2.4

6-36

Other Design Approaches

In the example given above, the microcomputer operates at the maximum internal clock rate of
2.5 MHz. For the TMS7000 family members with different timing requirements, the new
crystal-dependent constants and the value of T3DATA can be determined by the given
formulas. This allows both the software and hardware UARTSs to operate at other baud rates.

In the software UART, TIMER1 may be used instead of a software delay loop. This can greatly
increase the microcomputer’s throughput.

SWUART

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033

0034

0035

0036
0037

0038
0039

0040

0041

0042

F006

F006
F007
FO08
F009
FOOA
FOOB
FOOC
FOOD
FOOE
FOOF
FO10

FO1l1l
FO12
FO13
FO014
FO15
FO16
FO17
FO18
FO19
FO1lA
FO1B
FO1C
FO1D

7000 FAMILY MACRO ASSEMBLER 2.0

0008
00F7
0002
00FD
0004
0020

0022
0023
0024
0025
0026
0027
0028
0029
002A
002B
002cC
002D
00ZE

0004
0006

c8
A4
08
06
A3
FD
06
A6
04

FC

42
25
26
DE
26
DE
26
73
03
26
78
07
26

OPTION XREF

PAGE 0001

IDT ' SWUART'
AAAAAAARKAAAAAAARAARAAAAKRAKRARAAAARAAARAARAAARARAAARAAAAAA KA K
XKMIT1 EQU >08 TRANSMIT '1' MASK (OR)
KMITO EQU >F7 TRANSMIT '0' MASK (AND)
NRTS EQU >02 NOT READY TO SEND (OR)
RTS EQU >FD READY TO SEND (AND)
DSR EQU >04 DATA SET READY (TEST)
DIN EQU >20 DATA IN (TEST)
kS
BDCNT! EQU R34 BIT COUNTER (1)
BDCNT2 EQU R35 BIT COUNTER (1)
HFBAUD EQU R36 HALF BAUD RATE (1)
MODE EQU R37 MODE REGISTER (1)
BITCNT EQU R38 COUNTER INITIALIZER(1)
BITIME EQU R39 TIMER INITIALIZER (1)
DLAYRL EQU R40 DELAY LOOP1 (1)
DLAYR2 EQU R4l DELAY LOOP2 (1)
UATREG EQU R42 UART REGISTER (1)
TMP EQU R43 TEMPORARY (1)
STAT EQU R44 STATUS REGISTER (1)
RCHAR EQU R4S RECEIVED CHARACTER(1)
SHFCNT EQU R46 SHIFT COUNTER (1)
~
UARTIN EQU P4 PORT A-UART INPUT (1)
UARTOT EQU P6 PORT B-UART OUTPUT(1)

AORG >F006
*
* o= —
* CHARACTER TO BE TRANSMITTED IS IN THE A REGISTER
*

SWKXMIT PUSH B

WAIT

ORP

ANDP

BTJOP

MOV

RL

RL

AND

ADD

%XMIT1,UARTOT

%RTS , UARTOT

%DSR, UARTIN,WAIT

MODE,BITCNT

BITCNT
BITCNT

%>03 ,BITCNT

%>07,BITCNT

SAVE CONTENTS OF THE B REG.
PLACE A 'MARK' ON XMIT LINE

ASSERT 'RTS'

WAIT FOR HANDSHAKING

INITIALIZE

BIT

COUNTER

6-37

6-38

0043

0044

0045

0046

0047

0048

0049

0050

0051

0052

0053

0054

0055

0056

0057

0058

0059

0060

0061
0062

0063
0064

0065

0066

FOlE
FOlF
F020
F021
F022
F023
F024
F025
F026
F027
F028
F029
FO2A
FO2B
Fo02C
F02D
FO2E
FO2F
F030
FO31
F032
F033
F034
F035
F036
F037
F038
F039
FO3A
FO3B
FO3C
FO3D
FO3E
FO3F
F040
F041
F043
F044
F045
F046
F047
F048
F049

FO4A
FO04B
Fo4cC
F04D
FO4E
FO4F
FO50
FO51
F052
F053
FO054
FO055
FO056

LOOP1

LOOP2

SELF1

MOV

CLR

MOV

JMP

MOV

AND

ADD

RR

RL

RL

MOVP

AND

OR

MOVP

CALL

DJNZ

BTJO

DJINZ

NOP
BTJZ

ORP

JMP

%>05,BITIME

TMP

MODE, UATREG

LOOP2

%>01,TMP

A,TMP

TMP, UATREG

A

TMP

TMP

TMP
UARTOT,B
%XMITO,B
TMP,B

B, UARTOT
@DELAY

BITCNT,LOOP1

%>20,MODE, STOPB

BITIME,6SELF1

%>01,UATREG, PARZ

%XMIT1,UARTOT

PDONE

PAGE 0002

INITIAL TIME CONSTANT

SET UP START BIT

SET UP MASK FOR A REG
COPY LSB OF A REG TO TMP
CALCULATE PARITY

SET UP NEXT BIT FOR XMIT
ADJUST FOR BIT LOCATION
ADJUST FOR BIT LOCATION
ADJUST FOR BIT LOCATION
COPY P6 INTO B REG

MASK OUT BIT OF B REG
SET UP B REG FOR XMIT P6
DATA BIT XMITTED TO EIA

DELAY TO PROPER BAUD RATE

JUMP TO XMIT LOOP 9

JUMP TO STOPB IF PARITY I

DISABLED
TIME COMPENSATION

OUTPUT PARITY BIT = ONE

9

10

10

~ o

8

9

14

+2

S

0067

0068
0069
0070
0071
0072
0073
0074
0075

0076

0077

0078

0079

0080

0081

0082

0083

0084

0085

0086

0087
0088
0089
0090
0091
0092

0093

0094

0095

FO057
F058
F059
FO5A
FO5B
FO5C
FO5D
FOSF
FO060
F061

F062
F063
F064
F065
F066
F067
F068
F069
FO6A
FO6B
FO6C
FOéD
FO6E
FO6F
FO70
FO71
F072
F073
F074
F075
FO076
F077
FO78
FO79
FO7a
FO7C
FO7D
FO7E
FO7F
F080
FO81
F082
F083

F084
FO085
F086
F087
F088
F089
FO8A
FO8B
FO8C
FO8D

A3
F7
06
00
00
8E
F084
00
00
00

D7
2A
73
01
23
D3
2A
72
03
27
DA
27
FD
A4
08
06
72
07
27
DA
27
FD
00
8E
F084
DA
2A
F3
A4
02
06
Cc9
0A

PARZ

PDONE

STOPB

SELF2

SECOND

SELF3

ANDP %XMITO,UARTOT
NOP

NOP

CALL @DELAY

NOP

NOP

NOP

SWAP UATREG

AND %>01 ,UATREG
INC UATREG

MOV %>03,BITIME
DJNZ BITIME,SELF2
ORP %XMIT1,UARTOT
MOV %>07,BITIME
DJNZ BITIME,SELF3
NOP

CALL @DELAY

DJNZ UATREG,SECOND
ORP %NRTS , UARTOT
POP B

RETS

ROUTINE

MOV BDCNT2,DLAYR2
MOV BDCNT1,DLAYRI1
DJNZ DLAYRI1, HEREL
DJNZ DLAYRZ,ENTRY

PAGE 0003

OUTPUT PARITY BIT

TIME COMPENSATION

TIME COMPENSATION
GET NUMBER

OF STOP BIT

ZERO

INC BY 1 FOR COMPENSATION

TIME COMPENSATION

OUTPUT STOP BIT

TIME COMPENSATION

JUMP FOR SECOND STOP BIT

DISASSERT 'RTS'

RESTORE B REGISTER

INITIALIZE OUTER COUNT 10

INITIALIZE INNER COUNT 10

INNER COUNT

OUTER COUNT

9+2

9+2

6-39

PAGE 0004

FOSE 29
FOSF F7
0096 F090 OA RETS 7
0097 = ===
0098 * SOFTWARE UART RECEIVE ROUTINE
0099 * =
0100 FO91 C8 SWRCVD PUSH B SAVE B REG
0101 F092 42 MOV MODE,BITCNT INITIALIZE
F093 25
F094 26
0102 FO95 DE RL BITCNT BIT
FO96 26
0103 F097 DE RL BITCNT COUNTER
F098 26
0104 F099 73 AND %>03,BITCNT
FO9A 03
FO9B 26
0105 FO9C 42 MOV BITCNT,SHFCNT
FOSD 26
FOSE 2E
0106 FO9F 74 OR %>FC, SHFCNT
FOAO FC
FOAl 2E
0107 FOA2 D4 INV SHFCNT GET NUMBER OF SHIFT
FOA3 2E
0108 FOA4 78 ADD %>05,BITCNT
FOA5 05
FOA6 26
0109 *
0110 FOA7 D5 CLR RCHAR CLEAR INCOMING CHAR REGISTER
FOA8 2D
0111 FOA9 73 AND %>FE,STAT SET STATUS BIT-0 TO ZERO
FOAA FE
FOAB 2C
0112 FOAC D5 CLR TMP CLEAR TMP REG
FOAD 2B
0113 FOAE A3 ANDP %RTS,UARTOT ASSERT 'DTR'
FOAF FD
FOBO 06
0114 FOB1 A7 MARKCK BTJZP %DIN,UARTIN,MARKCK LOOP UNTIL MARK OCCURS
FOB2 20
FOB3 04
FOB4 FC
0115 FOB5S A6 STRBIT BTJOP %DIN,UARTIN,STRBIT LOOP UNTIL SPACE OCCURS
FOB6 20
FOB7 04
FOB8 FC
0116 FOBS 32 MOV HFBAUD,B INITIALIZE COUNTER
FOBA 24
0117 FOBB 00 HERE2 NOP TIME COMPENSATION(4)
0118 FOBC 00 NOP (4)
0119 FOBD CA DIJNZ B, HERE2 WAIT HALF A BIT (7+2)
FOBE FC
0120 * SAMPLE START BIT AT HALF BIT
0121 FOBF B6 BTJOP %DIN,UARTIN,STRBIT BRANCH IF FALSE START
FOCO 20
FOC1 04

6-40

0122

0123

0124
0125
0126
0127
0128
0129
0130

0131
0132

0133
0134

0135
0136

0137

0138
0139

0140
0141
0142
0143
0144
0145

0146
0147

0148
0149

0150
0151

0152
0153

0154

0155
0156

FOC2
FOC3
FOC4
FOC5
FoCe
FOC7
FOC8
FOCS
FOCA
FOCB
FOCC
FOCD
FOCE
FOCF
FODO

FOD2
FOD3
FOD4
FOD5

FOD6
FOD7
FOD8
FOD9
FODA
FODB
FODC
FODD
FODE
FODF
FOEO
FOEl
FOE2
FOE3
FOE4
FOES
FOE6
FOE7
FOE8
FOES
FOEA
FOEB
FOEC

FOEE
FOEF
FOFO
FOF1

FOF2
FOF3
FOF4
FOF5

F2
72
01
2A
43
25
2A
00
00
00
00
00
00
8E
F084

52
04

FE

A7
20
04
05
D3
2A
07
EO
05
00
00
00
00
00
DD
2D
00
D2
26
E6
E4
8E
FO084

76
20
25
13

52
03
CA

MOV

AND

NOP
NOP
NOP
NOP
NOP
NOP
SAMPLE CALL

*
MOV

RECHER DJNZ

*

%>01,UATREG

MODE, UATREG

@DELAY

%>04,B

B,RECHER

* SAMPLE DATA BIT HERE

BTJZP %DIN,UARTIN,ZERO

INC

SETC
JMP
ZERO NOP
NOP
NOP
NOP
NOP
BYPASS RRC

NOP
DEC

JNZ

CALL

BTJO

MOV

CYCLE DJNZ

*

UATREG

BYPASS

RCHAR

BITCNT
SAMPLE

@DELAY

%>20,MODE , THERE

%>03,B

B,CYCLE

* SAMPLE PARITY BIT HERE

PAGE 0005

MASK PARITY BIT

TIME COMPENSATION

DELAY FOR PROPER BAUD RATE

TIME COMPENSATION
DELAY CNT IS THE SAME
XMIT AND RCVD

READ DATA BIT JUMP IF O

TIME COMPENSATION TO ENSURE
ZERO BIT IS THE SAME LENGTH

AS ONE BIT
PLACE BIT INTO MSB RCHAR

IS PARITY BIT ENABLE?

IF NO, JUMP TO DONE
TIME COMPENSATION

34 CLOCK CYCLES LOOP

6-41

PAGE 0006

0157 FOF6 A7 BTJZP %DIN,UARTIN,PZ JUMP TO PZ IF PARITY BIT=0
FOF7 20
FOF8 04
FOF9 02
0158 FOFA D3 INC TMP INCREMENT TMP IF PARITY
FOFB 2B
0159 * BIT=1
0160 FOFC 45 PZ XOR TMP, UATREG CHECK FOR PARITY ERROR
FOFD 2B
FOFE 2A
0lé6l FOFF 73 AND %>01, UATREG MASK, SAVE
F100 01
F101 2A
0162 F102 44 OR UATREG, STAT AND PUT THE RESULT IN
F103 2R
F104 2C
0163 * STAT BIT O
0164 F105 D5 THERE CLR TMP
F106 2B
0165 F107 4D SHIFT CMP SHFCNT, TMP MAKE THE
F108 2E
F109 2B
0166 F10A E2 Jz DONE NECESSARY
F10B 06
01e7 F10C BO CLRC NUMBER OF
0168 F10D DD RRC RCHAR SHIFT
F10E 2D
0169 F10F DA DJIJNZ SHFCNT,SHIFT
F110 2E
F1l1l1 F5
0170 *
0171 Fll1z2 A4 DONE ORP %NRTS , UARTOT DISASSERT 'DTR'
F113 02
Fl14 06
0172 F115 12 MOV RCHAR, A MOVE THE DATA BIT TO A
F116 2D
0173 F117 C9 POP B RESTORE B REG
0174 F118 0A RETS
0175 END

NO ERRORS, NO WARNINGS

6-42

LABEL

BDCNT1
BDCNT2
BITCNT

BITIME
BYPASS
CYCLE
DELAY
DIN
DLAYR1
DLAYR2
DONE
DSR
ENTRY
HERE1
HERE2
HFBAUD
LOOP1
LOOP2
MARKCK

RTS
SAMPLE
SECOND
SELF1
SELF2
SELF3
SHFCNT
SHIFT
STAT
STOPB
STRBIT
SWRCVD
SWXMIT
THERE
TMP

UARTIN
UARTOT

UATREG

WAIT
KMITO
XMIT1
ZERO

VALUE

0022
0023
0026

0027
FOE4
FOF4
F084
0020
0028
0029
F112
0004
F087
FO8A
FOBB
0024
F028
F038
FOB1
0025
0002
FO057
FO5C
FOFC
002D
FOD4
00FD
FOCF
F072
FO4A
FO6C
FO75
002E
F107
002C
F062
FOBS
FO91
FO06
F105
002B

0004
0006

002a

FOOD
00F7
0008
FODF

DEFN

0011
0012
0015

0016
0145
0154
0092
000S
0017
0018
0171
0008
0093
0094
0117
0013
0047
0054
0114
0014
0006
0067
0070
0160
0022
0133
0007
0130
0081
0062
0079
0082
0023
0165
0021
0075
0115
0100
0032
0164
0020

0025
0026

0019

0035
0005
0004
0140

REFERENCES
0093

0092

0037 0038
0104 0105
0043 0062
0139

0154

0058 0070
0114 0115
0093 0094
0092 0095
0166

0035

0095

0094

0119

0l1le

0059

0046

0114

0037 0045
0086 0171
0054

0066

0157

0110 0145
0133

0034 0113
0148

0085

0062

0079

0082

0105 0106
0le9

0111 0162
0060

0115 0121
0151

0044 0047
0158 0160
0035 0114
0033 0034
0171

0045 0049
0137 0160
0035

0055 0067
0033 0065
0136

0039
0108
0078

0084
0121

0060

0168

0107

0048
0le4
0115
0054

0064
0161

0080

0040
0147
0079

0130
013e

0101

0172

0165

0049
0165
0121
0057

0075
0162

0041

0081

0149
0157

0123

0169

0051

0136
0065

0076

0059

0082

0151

0052

0157
0067

0077

0101

0053

0080

0085

PAGE 0007

0102

0056

0086

0122

0103

0112

0113

0123

6-43

6-44

HWUART

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031

0032

0033

0034
0035
0036

0037
0038

0039

0040
0041

0042
0043

FO06
FO06
F007
F008
FO09
FOOA
FOOB
FOOC
FOOD
FOOE

FOOF
FO10
FO1l1

FO012
FO13
FO14
FO15
FOlé6
FO17
FO018
FO19
FOla
FO1B
FO1lC
FO1D

7000 FAMILY MACRO ASSEMBLER

0008
00F7
0002
O00FD
0004

0000
0004
0005
0006
0010
0011
0011
0011
0014
0015
0016
0017

A2
04
05
A2
03
10
A2
11
11

A2
40
15

A3
FD
06
A6
04
04
FC
05
82
17
01
A2

OPTION XREF

PAGE 0001

ARKRKKRKKAKRKARAA KKK AR A Ak ke k ok hk ok k& ok Ak ok ko & ok ok & ko k ok ok ok k ok ok ok

IDT 'HWUART
XMIT1 EQU >08
XMITO EQU >F7
NRTS EQU >02
RTS EQU >FD
DSR EQU >04

* P. REGISTER DEFINITION
*

IOCNTO
UARTIN
ADDR
UARTOT
IOCNT1
SMODE
SCTLO
SSTAT
T3DATA
SCTL1
RXBUF

EQU
EQU
EQU

P6

Pl6
P17
P17
P17
P20
P21
P22
P23

TRANSMIT 'l1' MASK (OR)
TRANSMIT 'O' MASK (AND)
NOT READY TO SEND (OR)
READY TO SEND (AND)
DATA SET READY (TEST)

I/0 CONTROL REGISTER 0
PORT A-UART INPUT

PORT A DIRECTION

PORT B-UART OUTPUT

I/0 CONTROL REGISTER 1
SERIAL PORT MODE
SERIAL PORT CONTROL-0
SERIAL PORT CONTROL STATUS
TIMER 3 DATA

SERIAL PORT CONTROL-1
RECEIVER BUFFER
TRANSMITTER BUFFER

HWXMIT

WAIT

MOVP

ANDP

BTJOP

EINT
MOVP

IDLE
MOVP

>F006
%>04 ,ADDR

%>03,I0CNT1

%>11,SCTLO

%>40,SCTL1

%RTS , UARTOT

%DSR, UARTIN,WAIT

A,TXBUF

%>02,I0CNT1

SET A2=INPUT OTHERS ARE OUTPUT

CLEAR INT4 FLAG & ENABLE INT4

NO RESET OF SERIAL PORT

CLEAR ALL ERROR FLAGS AND
ENABLE TXEN=1, RXEN=0 DISABLED
USE INTERNAL CLK,RESET T3FLAG

DISABLE T3 INTERRUPT& SET P=0
ASSERT 'RTS'

WAIT FOR HANDSHAKING

ENABLE MASKABLE INTERRUPT

WAITING FOR INT4
CLEAR INT4 FLAG & DISABLE INT4

0044

0045
0046

0047
0048
0049
0050
0051
0052

0053

0054

0055
0056
0057

0058
0059
0060

0061
0062

0063

0064

0065
0066
0067
0068
0069
0070

0071

0072

FOlE
FOLF
FO020
F021
F022

F023
F024
F025
F026

F027
F028
F029
FO2A
FO02B
F02C
FO02D
FOZE
FO2F

FO30
FO31
F032

F033
F034
F035
F036
F037
F038
F039
FO3A
FO3B
FO3C
FO3D
FO3E
FO3F
F040
F041

F042
F043
F044
F045
F046
F047
F048
F049
FO4A

02
10
A2
00
11

A4
02
06
0A

A2
04
05
A2
03
10
A2
14
11

A2
40
15

05
A3
FD
06
01
A2
00
11
A2
02
10
A4
02
06
OA

A7
02
11
02
80
16
A7
01
11

PAGE 0002

MOVP %>00,SCTLO NO RESET, DISABLE XMIT TXEN=0
* RXEN=0
ORP %NRTS , UARTOT DISASSERT 'RTS'
RETS
*
*
*
*
HWRCVD MOVP %>04,ADDR SET A2=INPUT OTHERS ARE OUTPUT
MOVP %>03,IO0CNT1 CLEAR INT4 FLAG & ENABLE INT4
MOVP %>14,SCTLO NO RESET OF SERIAL PORT
* CLEAR ALL ERROR FLAGS & ENABLE
* RECEIVER RXEN=1,6 TXEN=0 DISABLE
MOVP %>40,SCTL1 INTERNAL CLK, P=0
* RESET T3FLAG & DIASBLE T3 INT
EINT ENABLE MASKABLE INTERRUPT
ANDP %RTS,UARTOT ASSERT 'DTR'
IDLE WAITING FOR INT4
MOVP %>00,SCTLO DISABLE RCVER RXEN=0, TXEN=0
MOVP %>02,I0CNT1 CLEAR INT4 FLAG& DISABLE INT4
ORP %NRTS , UARTOT DISASSERT 'DTR'
RETS

BTJZP %>02,SSTAT,TX

MOVP RXBUF,A INT4 GENERATED BY HWRCVD

TX BTJZP %>01,SSTAT,FIN JUMP TO FINISH

6-45

6-46

FO4B 04
0073 FO4C A7 LOOP BTJZP %>04,SSTAT,LOOP
FO4D 04
FO4E 11
FO4F FC
0074 FO50 OB FIN RETI
0075 *
0076 END

NO ERRORS, NO WARNINGS

PAGE 0003

INT4 GENERATED BY HWXMIT

INTERRUPT VECTOR STORE
AT FFF6 AND FFF7

LABEL

ADDR
DSR
FIN
HWRCVD
HWXMIT
IOCNTO
IOCNT1
LOOP
NRTS
RTS
RXBUF
SCTLO
SCTL1
SMODE
SSTAT
T3DATA
TX
TXBUF
UARTIN
UARTOT
WAIT
XMITO
XMIT1

VALUE

0005
0004
F050
F027
F006
0000
0010
Fo4cC
0002
OOFD
0016
0011
0015
0011
0011
0014
F048
0017
0004
0006
FO15
00F7
0008

DEFN

0015
0008
0074
0052
0031
0013
0017
0073
0006
0007
0023
0019
0022
0018
0020
0021
0072
0024
0014
0016
0039
0005
0004

REFERENCES

0031
0039
0072

0032
0073
0046
0038
0071
0033
0036

0070

0070
0041
0039
0038
0039

0052

0043

0064
0060

0044
0057

0072

0046

0053

0054

0073

0060

0063

0062

0064

PAGE 0004

6-47

6.3

6.3.1

6-48

INSTRUCTION SET APPLICATION NOTES

This section provides supplemental information about the instruction set as an aid to program
development. Refer to the TMS7000 ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE (MP
916) for further application notes.

The Status Register

The Status Register has four status bits that provide conditional execution of a variety of
arithmetic and logical tasks (see Figure 6-14). The Carry (C), Sign (N), Zero (Z), and Interrupt
enable () occupy bits 7-4 of the Status Register. The global INTERRUPT ENABLE (1) bit is only
affected by the EINT, DINT, and POP ST instructions. The C, N, and Z bits are affected by a
number of instructions. Table 6-8 classifies the instruction set according to the status bits
affected by each instruction.

Bit MSB 7 6 5 4 3 2 1 0 LsB

C N 4 1 Future Use

FIGURE 6-14 — STATUS REGISTER

Among the initialization-type instructions, two of the most useful are the compare instructions
CMP and CMPA. Section 6.3.1.1 describes the way in which CMP and CMPA can be used to
create the necessary status conditions for either a logical-type (unsigned) or arithmetic-type
(signed) jump instruction. In Section 6.3.1.2, the effects of addition and subtraction on the
Status Register are diagrammed for both signed and unsigned systems. Finally, Section
6.3.1.3 describes how SWAP and the rotation instructions RR, RRC, RL, and RLC can be used
to clear, set, shift, or test the various status bits as required.

TABLE 6-8 — CLASSIFICATION OF INSTRUCTIONS
ACCORDING TO STATUS BITS AFFECTED

INSTRUCTION TYPES
INIT CLEAR CARRY, | CLEAR CARRY, | CLEAR CARRY, NO
STATUS SETN,ZON | SETN,ZON | SETN,ZON co:ggggm STATUS
REG. A B RESULT AFFECTED
DINT LDA TSTB AND ADC BR
EINT STA XCHB ANDP ADD CALL
POP ST TSTA BTJO CMP DINZ
RETI BTJOP CMPA IDLE
SETC BTJZ DAC JICND)
CLRC BTJZP DEC JMP
CLR DECD NOP
INV DSB PUSH ST
MOV SBB RETS
MOVD SUB STSP
MOVP TRAP
OR LDSP
ORP
POP
PUSH
XOR
XORP

6.3.1.1

Compare And Jump Instructions

The compare instructions CMP and CMPA, affect the C, N, and Z bits in the Status Register by
subtracting a source operand (s) from a destination operand (d). The result of (d) — (s) is not
stored and is computed as follows:

(d)-(s) = (d) + (s) + 1 = 8-bit Result

where (s) is a direct one-for-one bitwise inversion, one’s complement, of (s). The C bit serves
as a "no borrow” bit and is set to ‘1 if (d) is greater than or equal to (s) . The N bit is set to the
same value as the MSB of the result. For two’s complement (signed) systems, N = 1 indicates
a negative number, and N = O a positive number. The Z bit is set to 1’ if the source is equal to
the destination ((d) = (s)). The CMP instruction uses the contents of a register (Rn) in the
Register File as the destination operand, and either an immediate operand (IOP) or the contents
of another Rn as the source operand. The CMPA instruction uses the contents of the A register
as the destination operand and one of the Extended Addressing modes (Direct, Register File
Indirect, or Indexed) is used to generate the source operand. Table 6-9 illustrates the limits of
both signed and unsigned systems by listing the status bits affected for various source and
destination operands substituted into the (d) — (s) expression.

TABLE 6-9 — COMPARE INSTRUCTION EXAMPLES: STATUS BIT VALUES

SRC DEST D-S C N z INSTRUCTIONS THAT WILL JUMP
FF 00 01 0 0 0 JL JUNC JUNE JNZ JP JPZ
00 FF FF 1 1 0 JHS JC UNE JUNZ JUN
(o[} 7F 7F 1 0 0 JHS JC JUNE JUNZ JP JPZ
81 00 7F 0 0 0 JL JUNC JUNE JNZ JP JPZ
00 81 81 1 1 0 JHS JC UNE JUNZ JUN
80 00 80 0 1 0 JL JUNC JUNE JUNZ JUN
00 80 80 1 1 0 JHS JC JUNE JNZ JUN
7F 80 01 1 0 0 JHS JC JUNE JUNZ JP JPZ
80 7F FF 0 1 0 JL JUNC JUNE JUNZ JUN
7F 7F 00 1 0 1 JHS JC JEQ JZz JPZ
7F 00 81 0 1 0 JL JUNC JUNE JUNZ JN

Since the compare instructions do not alter the source and destination operands, these
instructions can be executed prior to a conditional jump instruction to test for a particular
relationship between the source and destination operands. Table 6-10 lists the necessary
status bit conditions for each of the conditional jump instructions and the type of system in
which it is applicable, i.e., signed or unsigned.

6-49

TABLE 6-10 — STATUS BIT VALUES FOR CONDITIONAL JUMP INSTRUCTIONS

CONDITION ON 3:56;‘:;;; UN-
MNEMONIC INSTRUCTION WHICH JUMP SIGND
JUMP: SIGND
IS TAKEN
C N 2z
JC/JHS Jump If Carry/Jump
If Higher Or Same (d)unsgnd > =(s) 1 X X Y Y
JNC/JL Jump If No Carry/
Jump If Lower (d)unsgnd <(s) 0 X X Y Y
JZ/JEQ Jump If Zero/Jump
If Equal (d) = (s) X X 1 Y Y
JNZ/JNE Jump If Non-zero/
Jump If Not Equal (d) <> (s) X X 0 Y Y
JP Jump If Positive (d)-(s) =pos # X 0 O Y N
JN Jump If Negative (d)-(s) =neg # X 1 X Y N
JPZ Jump If Positive (d)-(s) =pos #
Or Zero or0O X 0 X Y N

X = Don’t care

Table searches are efficiently performed through the use of the compare A register extended
(CMPA) instruction. In the following example, A 150 byte table is searched for a match with a 6
byte string:

*

SEARCH MOV %150+ 1,R2 Table length = 150 bytes

LOOP1 MoV %6,B String length = 6 bytes

LOOP2 XCHB R2 Swap pointers, long string in B
DEC B Table end ? if so, no match found
Jz NOFIND
LDA @TABLE-1(B) Load test character
XCHB R2 Swap pointers, string pointer in B
CMPA @STRING-1(B) Match?
JNE LOOP1 If not, reset string ptr. else test
DJNZ B,LOOP2 next character.

MATCH EQU $ Match found

NOFIND EQU $ No match found

The indexed addressing mode is used in this example and has the capability to search a 256
byte string if needed. The B register alternates between a pointer into the 6 byte test string and
a pointer into the longer table string.

6-50

6.3.1.2

Addition And Subtraction Instructions

The TMS7000 instruction set supports both single and multi-precision addition and subtraction
for either binary or BCD, signed (two’s complement) or unsigned data.

The following example illustrates how to perform a 32-bit addition with the ADD and ADC
instructions:

ADD R30,R120
ADC R29,R119
ADC R28,R118
ADC R27,R117

Since no initial carry-in is desired, the first instruction is ADD. The ADC instruction is then
executed three times in succession to transfer the carry through all 32 bits.

The following example illustrates how to perform a 24-bit subtraction with the SUB and SBB
instructions:

suB R4,R127
SBB R3,R126
SBB R2,R125

Since no initial borrow-in is desired, the first instruction is SUB. The SBB instruction is then
executed twice in succession to achieve the 24-bit result. The addition and subtraction
instructions, their execution results, and the status bits affected are listed in Table 6-11.

TABLE 6-11 — ADD AND SUBTRACT INSTRUCTIONS

INSTR DESCRIPTION EXECUTION RESULTS STATUS BITS AFFECTED
ADD Add [(s)+ (d)] = (d) C: 1 oncarry out of [...]
N: set on result
Z: seton result
ADC Add w/Carry [{s) +(d) +Cl - (d) C: 1oncarry outof[...]
N: set on result
Z: set on result
DAC Dec Add w/C [(s) +(d) +C] = (d) C: 1if[..] >= 100 decimal
— Decimal BCD — N: set on result
Z: set on result
SuB Subtract [(d)-(s)] = (d) C:1if[.1>=0
N: set on result
Z: set on result
SBB Sub w/Borrow [(d)-(s)-1 + Cl—=(d) C: 1if no borrow
N: set on result
Z: set on result
DSB Dec Sub w/B [(d)-(s)-1 + C]-> (d) C: 1if no borrow
— Decimal BCD — N: set on result
Z: set onresult

6-51

6-52

The overflow/underflow conditions for both signed and unsigned systems are summarized in
Figures 6-15 and 6-16, respectively. Note that an Exclusive OR of the C and N bits ANDed with
the Exclusive OR of the MSBs of the operands can always be used as a check for an overflow or
underflow for subtraction in a signed system (if (C XOR N) AND (MSB1 XOR MSB2) = 1 then
out of range). When adding two signed numbers, the test for an out of range condition is
similar to the subtraction method. When an Exclusive OR of the C and N bits ANDed with the
inverse of the Exclusive OR of the MSBs of the two operands equals one then an overflow or
underflow has occured (if (C XOR N) AND (NOT(MSB1 XOR MSB2)) = 1 then out of range).

* ROUTINE TO CHECK FOR SIGNED UNDERFLOW OR OVERFLOW
* 1f (N XORN) AND (MSB1 XORMSB2) = 1 then out of range
MOV OPRND1,A

XOR OPRND2,A get XOR of the MSBs
SUB OPRND1,0PRND2 Subtract 2 signed numbers
JN ISNEG
NOTNEG JUNC NOERR N=0
JMP CXORN1 C XORN = 1, First part of equation
* is true
ISNEG JC NOERR N=1
CXORN1 TSTA CXORN = 1; set flags for MSB1 XOR MSB2
JPZ NOERR If (N XOR C) AND (MSB1 XOR MSB2) = 1 then

*

out of range. For addition change this
instruction to JN NOERR

OUTRNG ... Out of Range. Underflow or overflow
*

*

NOERR No underflow or overflow

In an unsigned system, the C bit always reveals the overflow/underflow status as follows:
addition overflow if C=1 after addition, and subtraction underflow if C =0 after subtraction.
Figures 6-15 and 6-16 show the >00 to >FF boundary as being detectable by the C bit. The
decrement instructions DEC and DECD set the C bit to O if the >00 to >FF boundary is
crossed, i.e., the O to 255 boundary in the unsigned system, and the O to — 1 boundary in the
signed system.

SUBTRACT
N=X (DON'T CARE)

ADDITION OVERFLOW
(C=1 POST ADDITION)

SUBTRACTION UNDERFLOW
(C=0 POST SUBTRACTION)

FIGURE 6-15 — UNSIGNED SYSTEM WITH 8 BITS OF MAGNITUD